o

NALURAL

| | Version 4.1.2 for Mainframes | Programming Guide

fy softwARE AG

This document applies to Natural Version 4.1.2 for Mainframes and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release
notes or new editions.

© Copyright Software AG 1979 - 2003.
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective
owners.

Programming Guide - Overview

Table of Contents

Programming Guide - Overview

Programming Guide - Overview.

Reporting Mode or Structured Mode

Reporting Mode or Structured Mode.
General Information .

Reporting Mode

Structured Mode
Setting the Programming Mode
Functional Differences
Closing a Processing Loop in Reportlng Mode
Closing a Processing Loop in Structured Mode
Database Reference .

Defining Names and Fields

Defining Names and Fields .

Use and Structure of DEFINE DATA Statement

Use and Structure of DEFINE DATA Statement .
Use of DEFINE DATA Statement. .
Defining Fields within a DEFINE DATA Statement
Defining Fields in a Separate Data Area
Structuring a DEFINE DATA Statement Using LeveI Numbers

Structuring and Grouping Your Definitions . ..

Level Numbers in View Definitions .

Level Numbers in Field Groups.

Level Numbers in Redefinitions. .

Example of Level Numbers in Redefinition .

User-Defined Variables

User-Defined Variables. .
Defining User-Defined Variables .
Names of User-Defined Variables.

Length of Variable Names .

Limitations of Variable Names . .

Characters Allowed in Variable Names .

First Character of Variable Names .

Special Considerations Regarding the Case of Characters in Vanable Names
Format and Length of User-Defined Variables.
Examples of User-Defined Variables .

User-Defined Constants .

User-Defined Constants
Numeric Constants
Alphanumeric Constants .

Date and Time Constants.
Hexadecimal Constants .
Logical Constants
Floating Point Constants .
Attribute Constants
Defining Named Constants
Initial Values (and the RESET Statement)

Initial Values (and the RESET Statement)
Assigning Initial Values to a User-Defined Vanable
Default Initial Values .

RESET Statement
Redefining Fields.
Redefining Fields

Copyright © Software AG 2003

Table of Contents

O©C O OOV UA,WWWWWWEREPE

Table of Contents

Using the REDEFINE Option of DEFINE DATA.
Example Program lllustrating the Use of a Redefinition .
Arrays
Arrays
Defining Arrays
Initial Values for Arrays
Assigning Initial Values to One- D|mensronal Arrays
Assigning Initial Values to Two-Dimensional Arrays.
Assigning the Same Value
Assigning Different Values
A Three-Dimensional Array.
Arrays as Part of a Larger Data Structure
Database Arrays
Using Arithmetic Expressrons in Index Notatron
Arithmetic Support for Arrays
Examples of Array Arithmetics
Data Blocks
Data Blocks .
Example of Data Block Usage
Defining Data Blocks
Block Hierarchies .
Accessing Data in an Adabas Database
Accessing Data in an Adabas Database .
Data Definition Modules - DDMs
Data Definition Modules - DDMs .
Use of Data Definition Modules.
Listing/Displaying DDMs
Components of a DDM.
Database Arrays
Database Arrays.
Multiple-Value Fields
Periodic Groups
Referencing Multiple- VaIue Frelds and Perrodrc Groups
Multiple-Value Fields Within Periodic Groups .
Referencing Multiple-Value Fields Within Periodic Groups
Referencing the Internal Count of a Database Array.
DEFINE DATA Views .
DEFINE DATA Views
Use of Database Views
Defining a Database View .
Statements for Database Access
Statements for Database Access.
READ Statement .
Use of READ Statement .
Basic Syntax of READ Statement .
Limiting the Number of Records to be Read .
STARTING/ENDING Clauses
WHERE Clause .
Further Example of READ Statement
FIND Statement .
Use of FIND Statement .
Basic Syntaxof FIND Statement
Limiting the Number of Records to be Processed
WHERE Clause .
Example of WHERE Clause
IF NO RECORDS FOUND Cond|t|on

Programming Guide - Overview

23
24
25
25
25
26
26
26
27
28
29
30
31
31
32
32
33
33
33
33
34
36
36
37
37
37
38
38
40
40
40
40
41
42
43
43
44
44
44
44
46
46
46
46
46
48
48
48
50
50
50
50
51
51
51
52

Copyright © Software AG 2003

Programming Guide - Overview

Example of IF NO RECORDS FOUND Clause
Further Examples of FIND Statement
HISTOGRAM Statement
Use of HISTOGRAM Statement
Syntax of HISTOGRAM Statement
Limiting the Number of Values to be Read
STARTING/ENDING Clauses
WHERE Clause .
Example of HISTOGRAM Statement
Multi-Fetch Clause .
Multi-Fetch Clause
Multi-Fetch on Malnframes
Use of Multi-Fetch Feature on Malnframes
Considerations for Multi-Fetch Usage
Size of the Multi-Fetch Buffer.
Support of TEST DBLOG .
Multi-Fetch under Windows and UNIX .
Database Processing Loops
Database Processing Loops . .
Creation of Database Processing Loops
Hierarchies of Processing Loops
Example of Processing Loop Hierarchy
Example of Nested FIND Loops Accessing the Same Flle
Further Examples of Nested READ and FIND Statements
Database Update - Transaction Processing .
Database Update - Transaction Processing
Logical Transaction
Example of STORE Statement
Record Hold Logic. .
Example of GET Statement
Backing Out a Transaction.
Restarting a Transaction
Example of Using Transaction Data to Restart a Transactlon
Selecting Records Using ACCEPT/REJECT.
Selecting Records Using ACCEPT/REJECT .
Statements Usable with ACCEPT and REJECT.
Example of ACCEPT Statement
Logical Condition Criteria in ACCEPT/REJECT Statements
Example of ACCEPT Statement with AND Operator.
Example of REJECT Statement with OR Operator .
Further Examples of ACCEPT and REJECT Statements
AT START/END OF DATA Statements . S
AT START/END OF DATA Statements
AT START OF DATA Statement
AT END OF DATA Statement .
Example of AT START OF DATA and AT END OF DATA Statements
Further Examples of AT START OF DATA and AT END OF DATA .
Output of Data . Ce e
Output of Data .
Layout of an Output Page .
Layout of an Output Page
Statements Influencing a Report Layout
General Layout Example
Statements DISPLAY and WRITE .
Statements DISPLAY and WRITE
DISPLAY Statement

Copyright © Software AG 2003

Table of Contents

52
52
53
53
53
53
54
54
54
55
55
55
55
56
56
57
57
59
59
59
60
60
62
63
64
64
64
65
65
65
66
66
66
68
68
68
68
69
69
69
70
71
71
71
71
71
72
73
73
74
74
74
74
76
76
76

Table of Contents

WRITE Statement . .
Example of DISPLAY Statement
Example of WRITE Statement .
Column Spacing - SF Parameter MNotatron
Tab Setting nT Notation
Line Advance - Slash Notation .
Example of Line Advance in DISPLAY Statement
Example of Line Advance in WRITE Statement. .
Further Examples of DISPLAY and WRITE Statements .
Index Notation for Multiple-Value Fields and Periodic Groups
Index Notation for Multiple-Value Fields and Periodic Groups .
Use of Index Notation . .
Example of Index Notation in DISPLAY Statement .
Example of Index Notation in WRITE Statement
Page Titles and Page Breaks
Page Titles and Page Breaks.
Default Page Title .
Suppress Page Title - NOTITLE Optron
Define Your Own Page Title - WRITE TITLE Statement
Specifying Text for Your Title.
Specifying Empty Lines after the Title
Title Justification and/or Underlining .
Logical Page and Physical Page
Page Size - PS Parameter.
Page Advance.
Page Advance Controlled by EJ Parameter

Page Advance Controlled by EJECT or NEWPAGE Statements

Eject/New Page when less thahine Left .
New Page with Title
Page Trailer - WRITE TRAILER Statement
Specifying a Page Trailer
Considering Logical Page Size
Page Trailer Justification and/or Underlrnrng
AT TOP OF PAGE Statement .
AT END OF PAGE Statement .
Further Examples .

Examples of WRITE TITLE, WRITE TRAILER AT TOP OF PAGE AT END OF PAGE and SKIP

Statements . .
Example of NOTITLE Optron .
Example of NEWPAGE and EJECT Statements .
Column Headers
Column Headers.
Default Column Headers
Suppress Default Column Headers NOHDR Optron
Define Your Own Column Headers. .
Combining NOTITLE and NOHDR .
Centering of Column Headers - HC Parameter
Width of Column Headers - HW Parameter.
Filler Characters for Headers - Parameters FC and GC
Underlining Character for Titles and Headers - UC Parameter
Suppressing Column Headers - Slash Notation.
Further Examples of Column Headers .
Parameters to Influence the Output of Fields
Parameters to Influence the Output of Fields .
Overview of Field-Output-Relevant Parameters.
Leading Characters - LC Parameter

Programming Guide - Overview

77
77
78
78
79
80
80
81
81
82
82
82
82
83
84
84
84
84
85
85
85
85
86
87
88
88
88
89
89
90
90
90
90
91
91
91

91
92
92
93
93
93
93
94
94
94
95
95
96
97
98
99
99
99
99

Copyright © Software AG 2003

Programming Guide - Overview

Insertion Characters - IC Parameter
Trailing Characters - TC Parameter.
Output Length - AL and NL Parameters.
Sign Position - SG Parameter .
Example Program without Parameters
Example Program with Parameters AL, NL, LC, IC and TC
Identical Suppress - IS Parameter . .
Example Program without IS Parameter .
Example Program with IS Parameter.
Zero Printing - ZP Parameter
Empty Line Suppression - ES Parameter
Example Program without Parameters ZP and ES
Example Program with Parameters ZP and ES
Further Examples of Field-Output-Relevant Parameters.
Edit Masks - EM Parameter
Edit Masks - EM Parameter .
Use of EM Parameter .
Edit Masks for Numeric Fields .
Edit Masks for Alphanumeric Fields
Length of Fields
Edit Masks for Date and Trme Frelds
Examples of Edit Masks
Example Program without EM Parameters
Example Program with EM Parameters
Further Examples of Edit Masks
Vertical Displays
Vertical Displays. .
Creating Vertical Displays .
Combining DISPLAY and WRITE
Tab Notation - Tfield
Positioning Notationx/y .
DISPLAY VERT Statement .
DISPLAY VERT without AS Clause .
DISPLAY VERT AS CAPTIONED and HORIZ
DISPLAY VERT AStext .
DISPLAY VERT AStext CAPTIONED
Tab Notation Pfield .
Further Example of DISPLAY VERT wrth WRITE Statement
Object Types Ce e
Object Types
What Types of Programmrng Objects Are There’)

What Types of Programming Objects Are There? .
Types of Programming Obijects. .
Creating and Maintaining Objects .

Data Areas .
Data Areas .
Use of Data Areas
Local Data Area
Global Data Area .
When are Global Data Areas Inrtralrzed’)
Parameter Data Area .
Parameter Defined within DEFINE DATA PARAMETER Statement
Parameter Defined in Parameter Data Area .
Programs, Subprograms and Subroutines
Programs, Subprograms and Subroutines.
A Modular Application Structure

Copyright © Software AG 2003

Table of Contents

100
100
100
101
101
102
102
103
103
103
104
104
105
105
106
106
106
106
107
107
107
107
108
108
109
110
110
110
110
111
112
113
113
114
115
116
116
117
118
118
119
119
119
119
120
120
120
120
121
122
122
122
123
124
124
124

Table of Contents

Multiple Levels of Invoked Obijects .
Program
Program Invoked W|th FETCH RETURN
Program Invoked with FETCH
Subroutine.
Inline Subroutine
External Subroutine .
Data Available to an Inline Subroutme
Data Available to an External Subroutine.
Subprogram
Data Available to a Subprogram .
Processing Flow when Invoking a Routine .
Maps .
Maps
Benefits of Usmg Maps
Types of Maps.
Creating Maps. .
Starting/Stopping Map Processmg
Helproutines e
Helproutines.
Invoking Help . .
Specifying Helproutines

Programming Considerations for HeIproutlnes .

Passing Parameters to Helproutines
Equal Sign Option .
Array Indices .
Help as a Window .
Multiple Use of Source Code - Copycode
Multiple Use of Source Code - Copycode
Use of Copycode . .
Processing of Copycode
Documenting Natural Objects - Text
Documenting Natural Objects - Text .
Use of Text Objects
Writing Text
Creating Event Driven Appllcatlons D|alog
Creating Event Driven Applications - Dialog
Creating Component Based Applications - Class

Creating Component Based Applications - Class .

Using Non-Natural Files - Resource.
Using Non-Natural Files - Resource .
Further Programming Aspects .
Further Programming Aspects
END/STOP Statements.
END/STOP Statements . .
End of Program - END Statement .
End of Application - STOP Statement
Conditional Processing - IF Statement .
Conditional Processing - IF Statement
Structure of IF Statement .
Example of IF Statement
Nested IF Statements . .
Example of Nested IF Statements .
Further Example of IF Statement
Loop Processing
Loop Processing.

Vi

Programming Guide - Overview

124
125
126
127
127
128
129
129
130
130
130
131
133
133
133
133
134
134
135
135
135
135
136
136
137
137
137
139
139
139
139
140
140
140
140
141
141
142
142
143
143
144
144
145
145
145
145
146
146
146
146
147
147
148
149
149

Copyright © Software AG 2003

Programming Guide - Overview Table of Contents

Use of Processing Loops 149
Limiting Database Loops . . S ke
Possible Ways of Limiting Database Loops 1k0

LT Session Parameter 150
LIMIT Statement. 150
Limit Notation . . e £ 10)
Priority of Limit Settlngs . . 1510
Limiting Non-Database Loops - REPEAT Statement 110
Example of REPEAT Statement . . e oy
Terminating a Processing Loop - ESCAPE Statement 14
Loops Within Loops . . Y X Y4
Example of Nested FIND Statements Y X Y4
Referencing Statements within a Program 153
Example of Referencing with Line Numbers. 154
Example with Statement Reference Labels. 154
Control Breaks e <16
ControlBreaks . 156
Use of ControlBreaks. 156
AT BREAK Statement. 156
Control Break Based on a Database F|eld 156
Control Break Based on a User-Defined variable. 158
Multiple Control Break Levels 189
Automatic Break Processing . . e K o X X
Example of System Functions with AT BREAK Statement 16724
BEFORE BREAK PROCESSING Statement 163
Example of BEFORE BREAK PROCESSING Statement 163
User-Initiated Break Processing - PERFORM BREAK PROCESSING Statement .. . 164
Example of PERFORM BREAK PROCESSING Statement 165
Further Example of AT BREAK Statement 166
Data Computation . le7
Data Computation . . O 1G4
Statements Used for Computlng Data or Transfernng Values e X Y 4
COMPUTE Statement. . e A S Y 4
Statements MOVE and COMPUTE 168
Statements ADD, SUBTRACT, MULTIPLY and DIVIDE e 3¢
Example of MOVE, SUBTRACT and COMPUTE Statements 169
COMPRESS Statement . . .
Example of COMPRESS and MOVE Statements . v 0
Example of COMPRESS Statement11
Mathematical Functions . . . Y 2
Further Examples of COMPUTE, MOVE and COMPRESS Statements 173
System Variables and System Functons 174
System Variables and System Functons. 174
System Variables 174
System Functions . . ey
Example of System Vanables and System Functlons T 4
Further Examples of System Variables. 176
Further Examples of System Functions. 176
Stack L.
Stack . . e v
Use of Natural Stack e Y A
Stack Processing . . e & 4
Placing Data on the Stack e 4
STACK Parameter 178
STACK Statement . . e
FETCH and RUN Statements e 4

Copyright © Software AG 2003 vii

Table of Contents

Clearing the Stack.
Processing of Date Information .
Processing of Date Informatian .
Edit Masks for Date Fields and Date System Varrables .
Default Edit Mask for Date - DTFORM Parameter

Date Format for Alphanumeric Representation - DF Parameter .

Examples of DF Parameter with WRITE Statements .
Example of DF Parameter with MOVE Statement.
Example of DF Parameter with STACK Statement
Example of DF Parameter with INPUT Statement.
Date Format for Output - DFOUT Parameter
Date Format for Stack - DFSTACK Parameter .
Year Sliding Window - YSLW Parameter
Combinations of DFSTACK and YSLW .
Date Format for Default Page Title - DFTITLE Parameter
Designing User Interfaces - Overview
Designing User Interfaces - Overview.
<Untitled> .
Screen Design
Control of Function- Key Lrnes Termrnal Command %Y
Format of Function-Key Lines
Positioning of Function-Key Lines
Cursor-Sensitivity
Control of the Message Line - Termrnal Command %M
Positioning the Message Line
Message Line Protection.
Message Line Color .
Assigning Colors to Fields - Termrnal Command %
Outlining - Terminal Command %D=B .
Statistics Line/Infoline - Terminal Command %X
Statistics Line
Infoline .
Windows . .
What is a Wrndow’? .
DEFINE WINDOW Statement
INPUT WINDOW Statement .
Standard/Dynamic Layout Maps
Standard Layout Maps
Dynamic Layout Maps
Multilingual User Interfaces
Language Codes
Defining the Language of a Natural Object
Defining the User Language .
Referencing Multilingual Objects.
Programs .
Error Messages .
Edit Masks for Date and Trme Frelds
Skill-Sensitive User Interfaces .
Dialog Design .
Dialog Design .
Field-Sensitive Processrng
*CURS-FIELD and POSield- name)
Simplifying Programming
System Function POS
Line-Sensitive Processing .
System Variable *CURS-LINE

viii

Programming Guide - Overview

178
179
179
179
179
180
181
181
181
182
182
183
184
185
187
188
188
189
189
189
189
190
192
192
192
193
193
193
194
195
195
195
196
196
198
199
202
202
202
203
203
204
205
205
207
207
207
207
209
209
209
209
210
210
211
211

Copyright © Software AG 2003

Programming Guide - Overview Table of Contents

Column-Sensitive Processing 212
System Variable *CURS-COL 212
Processing Based on FunctionKeys 212
System Variable *PF-KEY . . . e 212
Processing Based on Function-Key Names e ... 2138
System Variable *PF-NAME . . . e 213
Processing Data Outside an Active Wmdow e 213
System Variable*COM 214
Example Usage of *COM . . - I
Positioning the Cursor to *COM - the %T* Termlnal Command 215
Copying Data from a Screen 216
Terminal Commands %CS and %CC 216
Selecting a Line from Report Output for Further Processmg 216
Statements REINPUT/REINPUT FULL. 218
Object-Oriented Processing 219
Natural Command Processor. 219
Keywords and Reserved Words22
Keywords and Reserved Words 221
Performing a Keyword Check . . e s .21
Alphabetical List of Keywords and Reserved Words e s .21
Symbols and Special Characters.22
-A- 224
-B- 224)
-C- e e 227
-D- e 229
-E- 22 1)
-F- 24 /2
-G- ... 238
-H- o s 234

-1 - 2 1)
-J- 22 1)
-K- 2 1)
-L- 22 ¥
-M- 239
-N- 239
-O- L2
-P- - |
-Q- L 248
-R- ... 248
-S- - ¥
-T- 22 1)
-U- s 248
-V- C e e 248
-W- 249
-X- -2 1S

-Y - -2 1S
-Z- C e 280
Natural X25
Natural X . . 4 X §
Introduction to NaturaIX C e 252
Introduction to NaturalX 252
Why NaturalX? 252
Programming Techniques 2b2
Object-Based Programming 253
Defining Classes 253
Defining Interfaces 253

Copyright © Software AG 2003 iX

Table of Contents

Interface Inheritance.
Developing NaturalX Applications
Developing NaturalX Applications.
Using the Class Builder
Defining Classes
Creating a Natural Class Module
Specifying a Class
Defining an Interface.

Assigning an Object Data Varlable to a Property .

Assigning a Subprogram to a Method
Implementing Methods
Using Classes and Objects.
Defining Object Handles.
Creating an Instance of a Class .
Invoking a Particular Method of an Object
Accessing Properties
Sample Application .
Distributing NaturalX Applications
Distributing NaturalX Applications.
General
Internal, External and Local Classes
Globally Unique Identifiers - GUIDs.
Using the Class Builder .

Programming Guide - Overview

253
255
255
255
255
255
255
256
256
256
256
258
259
259
259
259
261
262
262
262
262
263
263

Copyright © Software AG 2003

Programming Guide - Overview Programming Guide - Overview

Programming Guide - Overview

This documentation applies to all platforms on which Natural can be used. It provides basic information on
various aspects of programming with Natural. You should be familiar with this information before you start to
write Natural applications. See &situral for Mainframes - Tutoriall his tutorial contains a series of sessions
which introduce you to some of the basics of Natural programming.

< Reporting Mode or Describes the differences between the two Natural programming modes.
Structured Mode Generally, it is recommended to use structured mode exclusively, because
it provides for more clearly structured applications. Therefore all
explanations and examples in this documentation refer to structured mode.
Any peculiarities of reporting mode will not be taken into consideration.

& Defining Names and Fields Describes how you define the fields you wish to use in a program.

& Accessing Data in an Adabe Describes various aspects of using Natural to access data in an Adabas
Database database.
On principle, the features and examples contained in this document also
apply to other database management systems supported by Natural.
Differences, if any, are described in tiatural Statements documentation
or in theNatural Parameter Reference documentation

& Output of Data Discusses various aspects of how you can control the format of an output
report created with Natural, that is, the way in which the data are displayed.

< Object Types Within an application, you can use several types of programming objects to
achieve an efficient application structure. This document discusses the
various types of Natural programming objects, such as data areas,
programs, subprograms, subroutines, helproutines, maps.

« Further Programming Discusses various other aspects of programming with Natural.
Aspects

< Designing User Interfaces Provides information on components of Natural which you can use to
design the user interfaces of your applications.

& Keywords and Reserved This document contains a list of all keywords and words that are reserved
Words in the Natural programming language.

< NaturalX Describes how to develop and distribute NaturalX applications on
Windows platforms.
On mainframe and UNIX platforms, you can use NaturalX to apply a
component-based programming style. However, on these platforms the
components cannot be distributed and can only run in a local Natural
session. Therefore, only the sectidaveloping NaturalX Applications
relevant.

Example Programs

This documentation contains several examples of Natural programs, as well as references to further example
programs not shown in the documentation.

All these programs are also provided in source-code form in the Natural library "SYSEXPG". (The programs are
all written in structured mode.)

Copyright © Software AG 2003 1

Programming Guide - Overview Programming Guide - Overview

Further example programs of using Natural statements are provided in the Natural library "SYSEXRM".
Please ask your Natural administrator about the availability of these libraries at your site.

The example programs use data from the files "EMPLOYEES" and "VEHICLES", which are supplied by
Software AG for demonstration purposes.

2 Copyright © Software AG 2003

Reporting Mode or Structured Mode Reporting Mode or Structured Mode

Reporting Mode or Structured Mode

The following topics are covered below:

General Information

Setting the Programming Mode

Functional Differences

Closing a Processing Loop in Reporting Mode
Closing a Processing Loop in Structured Mode
Database Reference

General Information

Natural offers two ways of programming:

® reporting mode
® structured mode

Generally, it is recommended to use structured mode exclusively, because it provides for more clearly structured
applications.

Reporting Mode

Reporting mode is only useful for the creation of adhoc reports and small programs which do not involve
complex data and/or programming constructs. (If you decide to write a program in reporting mode, be aware that
small programs may easily become larger and more complex.)

Structured Mode

Structured mode is intended for the implementation of complex applications with a clear and well-defined
program structure. The major benefits of structured mode are:

® The programs have to be written in a more structured way and are therefore easier to read and consequently
easier to maintain.

e As all fields to be used in a program have to be defined in one central location (instead of being scattered all
over the program, as is possible in reporting mode), overall control of the data used is much easier.

With structured mode, you also have to make more detail planning before the actual programs can be coded,
thereby avoiding many programming errors and inefficiencies.

Setting the Programming Mode

The default programming mode is set by the Natural administrator. You can change the mode by using the
system comman@LOBALS and the session parame&M:

GLOBALS SM=ON Structured Mode

GLOBALS SM=0OFF | Reporting Mode

Copyright © Software AG 2003 3

Functional Differences Reporting Mode or Structured Mode

Functional Differences

The major functional differences between reporting mode and structured mode are summarized below:

® The syntax related to closing loops and functional blocks differs in the two modes.
In structured mode, every loop or logical construct must be explicitly closed with a corresponding END-...
statement. Thus, it becomes immediately clear, which loop/logical constructs ends where.
Reporting mode uses (CLOSE) LOOP @1 ... DOENDstatements for this purpose.
END-... statements (except END-DEFINE, END-DECIDE and END-SUBROUTINE) cannot be used in
reporting mode, whileOOP andDO/DOEND statements cannot be used in structured mode.

® In reporting mode, you can use database fields without having to define théEFINME DATA
statement; also, you can define user-defined variables anywhere in a program, which means that they can be
scattered all over the program.
In structured modeall data elements to be used have to be defined in one central location (either in the
DEFINE DATA statement at the beginning of the program, or in a data area outside the program).

TheNatural Statements documentatfmovides separate syntax diagrams for each mode-sensitive statement.

The two examples below illustrate the differences between the two modes in constructing processing loops and
logical conditions.

Reporting Mode Example:

The reporting mode example uses the stateni¥dtand DOENDo mark the beginning and end of the
statement block that is based on £F€END OF DATA condition. TheEND statement closes all active
processing loops.

READ EMPLOYEES BY PERSONNEL-ID
DISPLAY NAME BIRTH POSITION
AT END OF DATA
DO
SKIP 2
WRITE / 'LAST SELECTED:’” OLD(NAME)
DOEND
END

Structured Mode Example:

The structured mode example uses an END-ENDDATA statement to clo&& #&eD OF DATA condition,
and an END-READ statement to close BIeAD loop. The result is a more clearly structured program in which
you can see immediately where each construct begins and ends:

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 POSITION
END-DEFINE
READ MYVIEW BY PERSONNEL-ID
DISPLAY NAME BIRTH POSITION
AT END OF DATA
SKIP 2
WRITE / 'LAST SELECTED:’ OLD(NAME)
END-ENDDATA
END-READ
END

4 Copyright © Software AG 2003

Reporting Mode or Structured Mode Closing a Processing Loop in Reporting Mode

Closing a Processing Loop in Reporting Mode
The statement&ND, LOOP (or CLOSE LOOP) o60RTmay be used to close a processing loop.

The LOOP statement can be used to close more than one loop, and the END statement can be used to close all
active loops. These possibilities of closing several loops with a single statement constitute a basic difference to
structured mode.

A SORT statement closes all processing loops and initiates another processing loop.
Example 1 - LOOP:
FIND ...
FIND ...

LOORP (closes inner FIND loop)
LOOP (closes outer FIND loop)

Example 2 - END:
FIND ...
FIND ...
END (closes all loops and ends processing)
Example 3 - SORT:
FIND ...
FIND ...
SORT ... (closes all loops,initiates loop)

END (closes SORT loop and ends processing)

Closing a Processing Loop in Structured Mode

Structured mode uses a specific loop-closing statement for each processing loop. Al gtatement does
not close any processing loop. TBORT statement must be preceded by an END-ALL statement, and the SORT
loop must be closed with an END-SORT statement.

Example 1 - FIND:

FIND ...
FIND ...

END-FIND (closes inner FIND loop)
END-FIND (closes outer FIND loop)

Example 2 - READ:

Copyright © Software AG 2003 5

Database Reference Reporting Mode or Structured Mode

READ ...
AT END OF DATA

END-ENDDATA
END-READ (closes READ loop)
END
Example 3 - SORT:
READ ...

FIND ...

END-ALL (closes all loops)
SORT (opens loop)

END-SORT (closes SORT loop)
END

Database Reference

In reporting mode, database fields and DDMs may be referenced without having been defaedd Brea

Reporting Mode:

DOm Program
DDM "STAFF" FIND STAFF WITH NAME = .
9] DISPLAY ID MAME CITY STREET
MNAME
AGE
STREET
CITY FE "
END

In structured mode, however, each database field to be used must be speciédriNB DATA statement (as
described irDefining FieldsandDatabase Accegs

Structured Mode:

6 Copyright © Software AG 2003

Reporting Mode or Structured Mode Database Reference

DDm Pragram
DDM "STAFF” DEFIMNE DATA LOCAL
D 1 VIEWXYZ VIEW OF STAFF
MNAME 21D
AGE 2 NAME
STREET i > 2 AGE
CITY 2 STREET
2CITY
END-DEFINE
FIND VIEWXYZ WITH NAME = ..

DISPLAY ID MAME CITY STREET

END-FIND

END

Copyright © Software AG 2003

Defining Names and Fields Defining Names and Fields

Defining Names and Fields

This document describes how you define the fields you wish to use in a program. These fields can be database
fields and user-defined fields.

It contains information that applies to all fields in general and to user-defined fields in particular.
The following topics are covered:

Use and Structure of DEFINE DATA Statement
User-Defined Variables

User-Defined Constants

Initial Values and the RESET Statement
Redefining Fields

Arrays

Data Blocks

Please note that only the major options of the DEFINE DATA statement are discussed here. Further options are
described in th&latural Statementdocumentation.

The particulars of database fields are describ&hiabase Access

8 Copyright © Software AG 2003

Use and Structure of DEFINE DATA Statement Use and Structure of DEFINE DATA Statement

Use and Structure of DEFINE DATA
Statement

The first statement in a Natural program must alwaysDEFRINE DATA statement which is used to define
fields for use in a program.

The following topics are covered:

Use of DEFINE DATA Statement

Defining Fields within a DEFINE DATA Statement

Defining Fields in a Separate Data Area

Structuring a DEFINE DATA Statement Using Level Numbers

Use of DEFINE DATA Statement

In theDEFINE DATA statement, you define all the fields - database fields as well as user-defined variables -
that are to be used in the program.

All fields to be usednust bedefined in the DEFINE DATA statement.
There are two ways to define the fields:

® The fields can be defined within the DEFINE DATA statement itself.
® The fields can be defined outside the programlotal or global data areaith the DEFINE DATA
statement referencing that data area.

If fields are used by multiple programs/routines, they should be defined in a data area outside the programs.
For a clear application structure, it is usually better to define fieldatanareasutside the programs.

Data areas are created and maintained witldakee area editpevhich is described in your Natural Editor
documentation.

In the first example below, the fields are defined within the DEFINE DATA statement of the program. In the
second example, the same fields are definedana data are@_DA), and the DEFINE DATA statement only
contains a reference to that data area.

Defining Fields within a DEFINE DATA Statement

The following example illustrates how fields can be defined withilDIBEINE DATA statement itself:

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 PERSONNEL-ID
1 #VARI-A (A20)
1 #VARI-B (N3.2)
1 #VARI-C (14)
END-DEFINE

Copyright © Software AG 2003 9

Defining Fields in a Separate Data Area Use and Structure of DEFINE DATA Statement

Defining Fields in a Separate Data Area

The following example illustrates how fields can be defined in a Local Data Area (LDA):
Program:
DEFINE DATA LOCAL

USING LDA39
END-DEFINE

Local Data Area "LDA39":

I TL Name F Leng Index/IniyEM/Name/Comment
V 1 VIEWEMP EMPLOYEES
2 NAME A 20
2 FIRST-NAME A 20
2 PERSONNEL-ID A 8
1 #VARI-A A 20
1 #VARI-B N 3.2
1 #VARI-C I 4

Structuring a DEFINE DATA Statement Using Level
Numbers

The following topics are covered:

® Structuring and Grouping Your Definitions

® Level Numbers in View Definitions

® |evel Numbers in Field Groups

® | evel Numbers in Redefinitions

Structuring and Grouping Your Definitions

Level numbers are used within tb&FINE DATA statement to indicate the structure and grouping of the
definitions. This is relevant with:

® view definitions
e field groups
e redefinitions

Level numberare 1- or 2-digit numbers in the range from 01 to 99 (the leading "0" is optional).
Generally, variable definitions are on Level 1.

The level numbering in view definitions, redefinitions and groups must be sequential; no level numbers may be
skipped.

10 Copyright © Software AG 2003

Use and Structure of DEFINE DATA Statement Level Numbers in View Definitions

Level Numbers in View Definitions

If you define a view, the specification of the view hame must be on Level 1, and the fields the view is comprised
of must be on Level 2. (For details on view definitions,Batbase Accegs

Example of Level Numbers in View Definition

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 BIRTH

END-DEFINE

Level Numbers in Field Groups

The definition of groups provides a convenient way of referencing a series of consecutive fields. If you define
several fields under a common group name, you can reference the fields later in the program by specifying only
the group name instead of the names of the individual fields.

The group name must be specified on Level 1, and the fields contained in the group must be one level lower.

For group names, the same naming conventions apply as for user-defined variables.

Example of Level Numbers in Group

DEFINE DATA LOCAL
1 #FIELDA (N2.2)
1 #FIELDB (14)
1 #GROUPA
2 #FIELDC (A20)
2 #FIELDD (A10)
2 #FIELDE (N3.2)
1 #FIELDF (A2)

END-DEFINE

In this example, the fields #FIELDC, #FIELDD and #FIELDE are defined under the common group name
#GROUPA. The other three fields are not part of the group. Note that #GROUPA only serves as a group name
and is not a field in its own right (and therefore does not have a format/length definition).

Level Numbers in Redefinitions

If you redefine a field, thREDEFINEoption must be on the same level as the original field, and the fields
resulting from the redefinition must be one level lower. For details on redefinitioriRedeéning Fields

Example of Level Numbers in Redefinition

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF STAFFDDM
2 BIRTH
2 REDEFINE BIRTH
3 #YEAR-OF-BIRTH (N4)
3 #MONTH-OF-BIRTH (N2)
3 #DAY-OF-BIRTH (N2)
1 #FIELDA (A20)
1 REDEFINE #FIELDA
2 #SUBFIELD1 (N5)

Copyright © Software AG 2003 11

Example of Level Numbers in Redefinition Use and Structure of DEFINE DATA Statement

2 #SUBFIELD2 (A10)
2 #SUBFIELD3 (N5)

END-DEFINE

In this example, the database field BIRTH is redefined as three user-defined variables, and the user-defined
variable #FIELDA is redefined as three other user-defined variables.

12 Copyright © Software AG 2003

User-Defined Variables User-Defined Variables

User-Defined Variables

User-defined variables are fields which you define yourself in a program. They are used to store values or
intermediate results obtained at some point in program processing for additional processing or display.

The following topics are covered:

® Defining User-Defined Variables
o Names of User-Defined Variables
e Format and Length of User-Defined Variables

Defining User-Defined Variables

You define a user-defined variable by specifying its name and its format/length in the DEFINE DATA
statement.

Example:

In this example, a user-defined variable of alphanumeric format and a length of 10 positions is defined with the
name #FIELD1.

DEFINE DATA LOCAL
1 #FIELD1 (A10)

END-DEFINE

Names of User-Defined Variables

When working with user-defined variables, the following naming conventions must be met.

Length of Variable Names
The name of a user-defined variable may be 1 to 32 characters long.

You can use variable names of over 32 characters (for example, in complex applications where longer
meaningful variable names enhance the readability of programs); however, only the first 32 characters are
significant and must therefore be unique, the remaining characters will be ignored by Natural.

Limitations of Variable Names
The name of a user-defined variable must not be a Natural reserved word.

Within one Natural program, you must not use the same name for a user-defined variable and a database field,
because this might lead to referencing errors aeadifying Data Structures

Characters Allowed in Variable Names

The name of a user-defined variable can consist of the following characters:

Copyright © Software AG 2003 13

First Character of Variable Names User-Defined Variables

Character | Explanation

A-Z alphabetical characters (upper and lower gase)
0-9 numeric characters

- hyphen

@ at sign

_ underline

/ slash

$ dollar sign

§ paragraph sign

& ampersand

hash/number sign

+ plus sign (only allowed as first character)

First Character of Variable Names
The first character of the name must be one of the following:

an upper-case alphabetical character
#
+

°
°
°
® &

If the first character is a "#", "+" or "&", the name must consist of at least one additional character.

Variables in a GDA with a "+" as first character must be defined on Level 01. Other levels are only used in a
redefinition.

"+" as the first character of a name is only allowed for application-independent variables (AlVs) and variables in
a global data area. Names of AlVs must begin with a "+".

"&" as the first character of a name is used in conjunction with dynamic source program modification (see the
RUN statement in the Natural Statements documentation), and as a dynamically replaceable character when
defining processing rules (see the map editor description in your Natural Editors documentation).

Special Considerations Regarding the Case of Characters in Variable
Names

On Windows and UNIX, lower-case characters entered as part of a variable name are internally converted to
upper case. The same happens on mainframe computert @W8RCEoption of theCOMPOPTsystem
command is set to ON.

Lower-case characters can only be entered as the second and subsequent characters of a variable name.

On mainframe computers, lower-case characters are not translated to upper case and are therefore interpreted as
being different from the respective upper-case characters, if

® the LOWSRCE option of the COMPOPT system command is set to OFF (the default value) and
® input in the editor is not translated to upper case (translation to upper case in the editor is controlled by
editor profile options and by options depending on the operating system).

14 Copyright © Software AG 2003

User-Defined Variables Format and Length of User-Defined Variables

For example, this will cause the names #FIELD and #field to be interpreted as two different field names.

Note:

For compatibility reasons, you should not use this feature if you plan to port applications developed on
mainframe computers to Windows or UNIX.

If you use lower-case characters as part of the variable name, it is highly recommended that variable names are
unique regardless of their case.

Format and Length of User-Defined Variables

Format and length of a user-defined variable are specified in parentheses after the variable name.

A user-defined variable can have one of the following formats and corresponding lengths:

Format Definable Length Internal Length
(in Bytes)

A | Alphanumeric 1-1073741824 (1GB| 1 - 1073741824

B | Binary 1-1073741824 (1GB| 1 - 1073741824

C | Attribute Control |- 2

D |Date - 4

F | Floating Point 4o0r8 40r8

I |Integer 1,2o0r4 1,2o0r4

L |Logical - 1

N | Numeric (unpacked 1 - 29 1-29

P | Packed numeric |1-29 1-15

T |Time - 7

Further information is provided dser-defined Variableim the Natural Statements documentation.

Examples of User-Defined Variables

DEFINE DATA LOCAL
[* 7 positions before and 2 after decimal point.
/* and 1 sign position.

END-DEFINE

Note:
When a user-defined variable of format P is output with a DISPLAY, WRITE, or INPUT statement, Natural
internally converts the format to N for the output.

Copyright © Software AG 2003 15

User-Defined Constants User-Defined Constants

User-Defined Constants

Constants can be used throughout Natural programs. This document discusses the types of constants that are
supported and how they are used.

The following topics are covered:

Numeric Constants
Alphanumeric Constants
Date and Time Constants
Hexadecimal Constants
Logical Constants

Floating Point Constants
Attribute Constants
Defining Named Constants

Numeric Constants

A numeric constant may contain 1 to 29 numeric digits.

A numeric constant used with a COMPUTE, MOVE, or arithmetic statement may contain a decimal point and
sign notation.

Examples:
MOVE 3 TO #XYZ
COMPUTE #PRICE = 23.34

COMPUTE #XYZ =-103
COMPUTE #A = #B * 6074

Alphanumeric Constants

An alphanumeric constant may contain 1 to 253 alphanumeric characters.
An alphanumeric constant must be enclosed in either apostrophes (') or quotation marks ().

Examples:

MOVE 'ABC’ TO #XYZ
MOVE "% INCREASE’ TO #TITLE
DISPLAY "LAST-NAME" NAME

If you want an apostrophe to be part of an alphanumeric constant that is enclosed in apostrophes, you must write
this as two apostrophes or as a single quotation mark.

If you want an apostrophe to be part of an alphanumeric constant that is enclosed in quotation marks, you write
this as a single apostrophe.

Example:

If you want the following to be output:

16 Copyright © Software AG 2003

User-Defined Constants Date and Time Constants

HE SAID, '"HELLO’

you can use any of the following notations:
WRITE '"HE SAID, "HELLO™

WRITE '"HE SAID, "HELLO"™

WRITE "HE SAID, "'HELLO™"

WRITE "HE SAID, '"HELLO™

An alphanumeric constant that is used to assign a value to a user-defined variable must not be split between
statement lines.

Alphanumeric constants may be concatenated to form a single value by use of a hyphen.
Examples:

MOVE "XXXXXX' -
'YYYYYY' TO #FIELD

MOVE "ABC" - 'DEF’ TO #FIELD

In this way, alphanumeric constants can also be concatenated with hexadecimal constants.

Date and Time Constants

A date constant may be used in conjunction with a format D variable. Date constants may have the following
formats:

D’yyyy-mm-dd| International date formelit

D’dd.mm.yyyy| German date format

D’dd/mm/yyyy| European date format
D’'mm/dd/yyyy| USA date format

wheredd represent the number of the daymthe number of the month agglyythe year.
Example:

DEFINE DATA LOCAL
1 #DATE (D)
END-DEFINE

MOVE D’'1997-08-11" TO #DATE

The default date format is controlled by the profile parameter DTFORM as set by the Natural administrator.

A time constant may be used in conjunction with a format T variable. A time constant has the following format:
T’ hh:ii:ss

wherehh represents houisminutes andgsseconds.

Example:

Copyright © Software AG 2003 17

Hexadecimal Constants User-Defined Constants

DEFINE DATA LOCAL
1 #TIME (T)
END-DEFINE

MOVE T'11:33:00' TO #TIME

Hexadecimal Constants

A hexadecimal constant may be used to enter a value which cannot be entered as a standard keyboard character.

A hexadecimal constant is prefixed with an "H". The constant itself must be enclosed in apostrophes and may
consist of the hexadecimal characters 0 - 9, A - F. Two hexadecimal characters are required to represent one byte
of data.

The hexadecimal representation of a character varies, depending on whether your computer uses an ASCII or
EBCDIC character set. Wenn you transfer hexadecimal constants to another computer, you may therefore have
to convert the characters.

ASCII Examples:

H'313233'" (equivalent to the alphanumeric constant '123’)
H'414243' (equivalent to the alphanumeric constant 'ABC’)

EBCDIC Examples:

H'F1F2F3" (equivalent to the alphanumeric constant '123’)
H'C1C2C3’ (equivalent to the alphanumeric constant '"ABC’)

Hexadecimal constants may be concatenated by using a hyphen between the constants.
ASCII Example:

H'414243' - H'444546’ (equivalent to '"ABCDEF’)

EBCDIC Example:

H'C1C2C3' - H'C4C5C6’ (equivalent to 'ABCDEF’)

Logical Constants

The logical constants "TRUE" and "FALSE" may be used to assign a logical value to a field defined with format
L.

Example:
DEFINE DATA LOCAL
1 #FLAG (L)
END-DEFINE
MOVE TRUE TO #FLAG
IF #FLAG ...

statement ...

MOVE FALSE TO #FLAG
END-IF

18 Copyright © Software AG 2003

User-Defined Constants Floating Point Constants

Floating Point Constants

Floating point constants can be used with variables defined with format F.
Example:

DEFINE DATA LOCAL

1 #FLT1 (F4)

END-DEFINE

COMPUTE #FLT1 = -5.34E+2

Attribute Constants

Attribute constants can be used with variables defined with format C (control variables). This type of constant
must be enclosed within parentheses.

The following attributes may be used:

AD=D | default CD=BL |blue
AD=B | blinking CD=GR |green
AD=| |intensified CD=NE | neutral

AD=N | non-display CD=PI |pink
AD=V |reverse video |CD=RE |red
AD=U |underlined CD=TU |turquoise

AD=C | cursivelitalic CD=YE |yellow

AD=Y | dynamic attributg
AD=P | protected

See also session paramet&is andCD.
Example:

DEFINE DATA LOCAL

1 #ATTR (C)

1 #FIELD (A10)

END-DEFINE

MOVE (AD=I CD=BL) TO #ATTR

INPUT #FIELD (CV=#ATTR)

Defining Named Constants

If you need to use the same constant value several times in a program, you can reduce the maintenance effort by
defining a named constant: you define a field inDiE-INE DATA statement, assign a constant value to it, and

use the field name in the program instead of the constant value. Thus, when the value has to be changed, you
only have to change it once in the DEFINE DATA statement and not everywhere in the program where it occurs.

Copyright © Software AG 2003 19

Defining Named Constants User-Defined Constants

You specify the constant value in angle brackets witlkélygvord"CONSTANT" after the field definition in the
DEFINE DATA statement. If the value is alphanumeric, it must be enclosed in apostrophes.

Example:
DEFINE DATA LOCAL
1 #FIELDA (N3) CONSTANT <100>

1 #FIELDB (A5) CONSTANT <’ABCDE’>
END-DEFINE

During the execution of the program, the value of such a named constant cannot be modified.

20 Copyright © Software AG 2003

Initial Values (and the RESET Statement) Initial Values (and the RESET Statement)

Initial Values (and the RESET Statement)

The following topics are covered:

® Assigning Initial Values to a User-Defined Variable
e Default Initial Values
e RESET Statement

Assigning Initial Values to a User-Defined Variable

You can assign an initial value to a user-defined variable. You specify the initial value in angle brackets with the
keyword"INIT" after the variable definition in tHeEFINE DATA statement.

If the initial value is alphanumeric, it must be enclosed in apostrophes.

Example:
DEFINE DATA LOCAL
1 #FIELDA (N3) INIT <100>

1 #FIELDB (A20) INIT <ABC’>
END-DEFINE

The initial value for a field may also be the value dfadural system variable

Example of system variabt®ATX as initial value:
DEFINE DATA LOCAL

1 #MYDATE (D) INIT <*DATX>
END-DEFINE

As initial value, a variable can also be filled, entirely or partially, with a specific single character or string of
characters (only possible for alphanumeric variables).

With the optionFULL LENGTH<character(sy the entire field is filled with the specifiatharacter(s)

With the optionLENGTHnN <character(s¥ the firstn positions of the field are filled with the specified
character(s)

Example of FULL LENGTH:
In this example, the entire field will be filled with asterisks.
DEFINE DATA LOCAL

1 #FIELD (A25) INIT FULL LENGTH <'*'>
END-DEFINE

Example of LENGTH n:

In this example, the first 4 positions of the field will be filled with exclamation marks.
DEFINE DATA LOCAL

1 #FIELD (A25) INIT LENGTH 4 <'I'>
END-DEFINE

Copyright © Software AG 2003 21

Default Initial Values Initial Values (and the RESET Statement)

Default Initial Values

If you specify no initial value for a field, the field will be initialized with a default initial value (null value)
depending on its format:

Format Default Initial Value
B,F,I,N,P|O

A blank

L F(ALSE)

D D"’

T T'00:00:00’

C (AD=D)

RESET Statement

The RESETstatement is used to set the value of a field to a null value, or to a specific initial value.

e RESET(without INITIAL) sets the value of each specified field to a null value.
® RESET INITIAL sets each specified field to the initial value as defined for the field DERNE DATA
statement.

Example:
DEFINE DATA LOCAL
1 #FIELDA (N3) INIT <100>
1 #FIELDB (A20) INIT <’ABC’>
1 #FIELDC (14) INIT <5>
END-DEFINE
RESET #FIELDA /* resets field value to null

RESET INITIAL #FIELDA #FIELDB #FIELDC /* resets field values to initial values

22 Copyright © Software AG 2003

Redefining Fields Redefining Fields

Redefining Fields

Redefinition is used to change the format of a field, or to divide a single field into segments.
The following topics are covered:

e Using the REDEFINE Option of DEFINE DATA
® Example Program lllustrating the Use of a Redefinition

Using the REDEFINE Option of DEFINE DATA

The REDEFINEoption of theDEFINE DATA statement can be used to redefine a single field - either a
user-defined variable or a database field - as one or more new fields. A group can also be redefined.

Important: Dynamic variables are not allowed.

The REDEFINE option redefines byte positions of a field from left to right, regardless of the format. Byte
positions must match between original field and redefined field(s).

The redefinition must be specified immediately after the definition of the original field.
Example 1:

In the following example, the database field BIRTH is redefined as three new user-defined variables:

DEFINE DATA LOCAL
01 EMPLOY-VIEW VIEW OF STAFFDDM
02 NAME
02 BIRTH
02 REDEFINE BIRTH
03 #BIRTH-YEAR (N4)
03 #BIRTH-MONTH (N2)
03 #BIRTH-DAY (N2)
END-DEFINE

Example 2:

In the following example, the group #VAR2, which consists of two user-defined variables of format N and P
respectively, is redefined as a variable of format A:

DEFINE DATA LOCAL
01 #VARL (A15)
01 #VAR?2
02 #VAR2A (N4.1)
02 #VAR2B (P6.2)
01 REDEFINE #VAR2
02 #VAR2RD (A10)
END-DEFINE

With the notatiorFILLER nX you can definen filler bytes - that is, segments which are not to be used - in the
field that is being redefined. (The definition of trailing filler bytes is optional.)

Example 3:

Copyright © Software AG 2003 23

Example Program lllustrating the Use of a Redefinition Redefining Fields

In the following example, the user-defined variable #FIELD is redefined as three new user-defined variables,
each of format/length A2. The FILLER notations indicate that the 3rd and 4th and 7th to 10th bytes of the
original field are not be used.

DEFINE DATA LOCAL
1 #FIELD (A12)
1 REDEFINE #FIELD
2 #RFIELD1 (A2)
2 FILLER 2X
2 #RFIELD2 (A2)
2 FILLER 4X
2 #RFIELD3 (A2)
END-DEFINE

Example Program lllustrating the Use of a Redefinition

The following program illustrates the use of a redefinition:

** Example Program 'DDATAXO0Y’
DEFINE DATA LOCAL
01 VIEWEMP VIEW OF EMPLOYEES
02 NAME
02 FIRST-NAME
02 SALARY (1:1)
01 #PAY (N9)
01 REDEFINE #PAY
02 FILLER 3X
02 #USD (N3)
02 #000 (N3)
END-DEFINE
*

READ (3) VIEWEMP BY NAME STARTING FROM 'JONES’
MOVE SALARY (1) TO #PAY
DISPLAY NAME FIRST-NAME #PAY #USD #000
END-READ
END

Note how #PAY and the fields resulting from its definition are displayed:

Page 1 99-08-08 17:48:59
NAME FIRST-NAME #PAY #USD #000
JONES VIRGINIA 46000 46 O
JONES MARSHA 50000 50 O
JONES ROBERT 31000 31 O

24 Copyright © Software AG 2003

Arrays Arrays

Arrays

Natural supports the processing of arrays.
The following topics are covered:

Defining Arrays

Initial Values for Arrays

Assigning Initial Values to One-Dimensional Arrays
Assigning Initial Values to Two-Dimensional Arrays
A Three-Dimensional Array

Arrays as Part of a Larger Data Structure
Database Arrays

Using Arithmetic Expressions in Index Notation
Arithmetic Support for Arrays

Defining Arrays

Arrays are multi-dimensional tables, that is, two or more logically related elements identified under a single
name. Arrays can consist of single data elements of multiple dimensions or hierarchical data structures which
contain repetitive structures or individual elements. In Natural, an array can be one-, two- or three-dimensional.
It can be an independent variable, part of a larger data structure or part of a database view.

To define an array variable, after the format and length you specify a slash followed by a sioaetled
notation that is, the number of occurrences of the array.

Important:
Dynamic variables are not allowed.

For example, the following array has three occurrences, each occurrence being of format/length A10:
DEFINE DATA LOCAL

1 #ARRAY (A10/1:3)
END-DEFINE

To define a two-dimensional array, you specify an index notation for both dimensions:

DEFINE DATA LOCAL
1 #ARRAY (A10/1:3,1:4)
END-DEFINE

A two-dimensional array can be visualized as a table. The array defined in the example above would be a table
that consists of 3 "rows" and 4 "columns":

Copyright © Software AG 2003 25

Initial Values for Arrays Arrays

Initial Values for Arrays

To assign initial values to one or more occurrences of an array, you use an INIT specification, similar to that for
"ordinary" variables

Assigning Initial Values to One-Dimensional Arrays

The following examples illustrate how initial values are assigned to a one-dimensional array.
® To assign an initial value to one occurrence, you specify:
1 #ARRAY (A1/1:3) INIT (2) <A'>
"A" is assigned to the second occurrence.
® To assign the same initial value to all occurrences, you specify:
1 #ARRAY (A1/1:3) INIT ALL <’A’™>
"A" is assigned to every occurrence. Alternatively, you could specify:
1 #ARRAY (A1/1:3) INIT (*) <A™>
® To assign the same initial value to a range of several occurrences, you specify:
1 #ARRAY (A1/1:3) INIT (2:3) <A™>
"A" is assigned to the second to third occurrence.
® To assign a different initial value to every occurrence, you specify:
1 #ARRAY (A1/1:3) INIT <A’,/'B’,'C>
"A" is assigned to the first occurrence, "B" to the second, and "C" to the third.
® To assign different initial values to some (but not all) occurrences, you specify:
1 #ARRAY (A1/1:3) INIT (1) <’A’> (3) <'C™>
"A" is assigned to the first occurrence, and "C" to the third; no value is assigned to the second occurrence.
Alternatively, you could specify:
1 #ARRAY (A1/1:3) INIT <A, C'>
e If fewer initial values are specified than there are occurrences, the last occurrences remain empty:
1 #ARRAY (A1/1:3) INIT <’A’)B™>

"A" is assigned to the first occurrence, and "B" to the second; no value is assigned to the third occurrence.

Assigning Initial Values to Two-Dimensional Arrays
The following examples illustrate how initial values are assigned to a two-dimensional array.

For the examples, let us assume a two-dimensional array with three occurrences in the first dimension ("rows")
and four occurrences in the second dimension ("columns"):

26 Copyright © Software AG 2003

Arrays

1 #ARRAY (A1/1:3,1:4)

Vertical: First Dimension (1:3), Horizontal: Second Dimension (1:4):

(1,1) (1,2) 1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) 3,3) (3,4)

Assigning the Same Value

The first set of examples illustrates how fagneinitial value is assigned to occurrences of a two-dimensional
array; the second set of examples illustrates tifferentinitial values are assigned.

In the examples, please note in particular the usage of the notations "*" and "V". Both notationsatiefer to
occurrences of the dimension concerned: "*" indicates that all occurrences in that dimension are initialized with
thesamevalue, while "V" indicates that all occurrences in that dimension are initializedlifféghentvalues.

® Assigning the Same Value
® Assigning Different Values

Assigning the Same Value

® To assign an initial value to one occurrence, you specify:

To assign the same initial value to one occurrence in the second dimension - in all occurrences of the first
dimension - you specify:

1 #ARRAY (A1/1:3,1:4) INIT (*,3) <A>

® To assign the same initial value to a range of occurrences in the first dimension - in all occurrences of the
second dimension - you specify:

1 #ARRAY (A1/1:3,1:4) INIT (2:3,%) <A'>
A A A A
A A A A

® To assign the same initial value to a range of occurrences in each dimension, you specify:

1 #ARRAY (A1/1:3,1:4) INIT (2:3,1:2) <A’>

Copyright © Software AG 2003 27

Assigning Different Values

Arrays

A

A

A

A

® To assign the same initial value to all occurrences (in both dimensions), you specify:

1 #ARRAY (A1/1:3,1:4) INIT ALL <’A’>
A A A
A A A
A A A

Alternatively, you could specify:

1 #ARRAY (A1/1:3,1:4)

INIT (*%) <A™>

Assigning Different Values

1 #ARRAY (A1/1:3,1:4)

INIT (V,2) <A'B''C>

1 #ARRAY (A1/1:3,1:4)

INIT (V,2:3) <'A’,B’,'C">

1 #ARRAY (A1/1:3,1:4)

INIT (V,*) <A,B’,C’>

B

C

1 #ARRAY (A1/1:3,1:4)

INIT (V,*) <A’,/C'>

A

A

C

C

1 #ARRAY (A1/1:3,1:4)

28

INIT (V,*) <A''B’>

Copyright © Software AG 2003

Arrays

A Three-Dimensional Array

A A A
B B B B
1 #ARRAY (A1/1:3,1:4) INIT (V,1) <A’,B’,C'>
(V,3) <D'E'F>
B E
1 #ARRAY (A1/1:3,1:4) INIT (3,V) <A’,B’,C,/D’>
A B C D
1 #ARRAY (A1/1:3,1:4) INIT (*V) <A'’B,/C','D’>
A B C
A B C
A C D
1 #ARRAY (A1/1:3,1:4) INIT (2,1) <A’> (*,2) <B’>
(3,3)<C>(34) <D>
B
A B
C D
1 #ARRAY (A1/1:3,1:4) INIT (2,1) <A™> (V,2) <B',C',D’>
(3,3) <E’> (3,4) <F>
B
A
D F

A Three-Dimensional Array

A three-dimensional array could be visualized as follows:

Copyright © Software AG 2003

29

Arrays as Part of a Larger Data Structure Arrays

The array illustrated here would be defined as follows (at the same time assigning an initial value to the
highlighted field in row 1, column 2, plane 2):

DEFINE DATA LOCAL
1 #ARRAY?2
2 #ROW (1:4)
3 #COLUMN (1:3)
4 #PLANE (1:3)
5 #FIELD2 (P3) INIT (1,2,2) <100>
END-DEFINE

If defined as a local data area in the data area editor, the same array would look as follows:

I TL Name F Leng Index/Init/EM/Name/Comment
1 #ARRAY2
2 #ROW (1:4)
3 #COLUMN (2:3)
4 #PLANE (2:3)
| 5#FIELD2 P 3

Arrays as Part of a Larger Data Structure

The multiple dimensions of an array make it possible to define data structures analogous to COBOL or PL1
structures.

Example:

30 Copyright © Software AG 2003

Arrays Database Arrays

DEFINE DATA LOCAL
1 #AREA
2 #FIELD1 (A10)
2 #GROUP1 (1:10)
3 #FIELD2 (P2)
3 #FIELD3 (N1/1:4)
END-DEFINE

In this example, the data area #AREA has a total size of:
10 + (10 * (2 + (1 * 4))) bytes = 70 bytes.

#FIELDL1 is alphanumeric and 10 bytes long. #GROUP1 is the name of a sub-area within #AREA which consists
of 2 fields and has 10 occurrences. #FIELD?2 is packed numeric, length 2. #FIELD3 is the second field of
#GROUP1 with four occurrences, and is humeric, length 1.

To reference a particular occurrence of #FIELDS3, two indices are required: first, the occurrence of #tGROUP1
must be specified, and second, the particular occurrence of #FIELD3 must also be specified. For example, in an
ADD statement later in the same program, #FIELD3 would be referenced as follows:

ADD 2 TO #FIELD3 (3,2)

Database Arrays

Adabas supports array structures within the database in the fonuitgfle-value fieldsandperiodic groups
These are described und@atabase Arrays

The following example showsREFINE DATA view containing a multiple-value field:

DEFINE DATA LOCAL
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE (1:10) /* <--- MULTIPLE-VALUE FIELD
END-DEFINE

The same view in a local data area would look as follows:

I TL Name F Leng Index/InittEM/Name/Comment
V 1 EMPLOYEES-VIEW EMPLOYEES
2 NAME A 20
M 2 ADDRESS-LINE A 20 (1:10) /* MU-FIELD

Using Arithmetic Expressions in Index Notation
A simple arithmetic expression may also be used to express a range of occurrences in an array.

Examples:

MA (l:1+5) Values of the field MA are referenced, beginning with value | and ending with value I+5.

MA (1+2:3-3) Values of the field MA are referenced, beginning with value 1+2 and ending with value J-3.

Copyright © Software AG 2003 31

Arithmetic Support for Arrays Arrays

Only the arithmetic operators "+" and "-" may be used in index expressions.

Arithmetic Support for Arrays

Arithmetic support for arrays include operations at array level, at row/column level, and at individual element
level. Only simple arithmetic expressions are permitted with array variables, with only one or two operands and
an optional third variable as the receiving field. Only the arithmetic operators "+" and "-" are allowed for
expressions defining index ranges.

Examples of Array Arithmetics
The following examples assume the following field definitions:

DEFINE DATA LOCAL
01 #A (N5/1:10,1:10)
01 #B (N5/1:10,1:10)
01 #C (N5)
END-DEFINE

1. ADD #A(**) TO #B(*,*)
The result operand, array #B, contains the addition, element by element, of the array #A and the original
value of array #B.
2. ADD 4 TO #A(*,2)
The second column of the array #A is replaced by its original value plus 4.
3. ADD 2 TO #A(2,%)
The second row of the array #A is replaced by its original value plus 2.
4. ADD #A(2,*) TO #B(4,%)
The value of the second row of array #A is added to the fourth row of array #B.
5. ADD #A(2,*) TO #B(*,2)
This is an illegal operation and will result in a syntax error. Rows may only be added to rows and columns
to columns.
6. ADD #A(2,*) TO #C
All values in the second row of the array #A are added to the scalar value #C.
7. ADD #A(2,5:7) TO #C
The fifth, sixth, and seventh column values of the second row of array #A are added to the scalar value #C.

32 Copyright © Software AG 2003

Data Blocks Data Blocks

Data Blocks

To save data storage space, you can cregitebal data arewith data blocks.
The following topics are covered:

® Example of Data Block Usage
e Defining Data Blocks
® Block Hierarchies

Example of Data Block Usage

Data blocks can overlay each other during program execution, thereby saving storage space.

For example, given the following hierarchy, Blocks B and C would be assigned the same storage area. Thus it
would not be possible for Blocks B and C to be in use at the same time. Modifying Block B would result in
destroying the contents of Block C.

Sub-Block B Sub-Block C

Sub-Block D

Defining Data Blocks

You define data blocks in tldata area editoiyou establish the block hierarchy by specifying which block is
subordinate to which: you do this by entering the name of the "parent” block in the comment field of the block

definition.

In the following example, SUB-BLOCKB and SUB-BLOCKC are subordinate to MASTER-BLOCKA,;
SUB-BLOCKD is subordinate to SUB-BLOCKB.

Copyright © Software AG 2003 33

Block Hierarchies

Data Blocks

The maximum number of block levels is 8 (including the master block).

Example:

Global Data Ared&-BLOCK:

I TL Name F Leng Index/Init/EM/Name/Comment

B MASTER-BLOCKA

1 MB-DATAO1 A 10

B SUB-BLOCKB MASTER-BLOCKA
1 SBB-DATAO1 A 20

B SUB-BLOCKC MASTER-BLOCKA
1 SBC-DATAO1 A 40

B SUB-BLOCKD SUB-BLOCKB
1 SBD-DATAO1 A 40

To make the specific blocks available to a program, you use the following syntaxDBFHEE DATA
statement:

Programi.:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA
END-DEFINE

Program?:

DEFINE DATA GLOBAL

USING G-BLOCK

WITH MASTER-BLOCKA.SUB-BLOCKB
END-DEFINE

Program3:

DEFINE DATA GLOBAL

USING G-BLOCK

WITH MASTER-BLOCKA.SUB-BLOCKC
END-DEFINE

Program:

DEFINE DATA GLOBAL

USING G-BLOCK

WITH MASTER-BLOCKA.SUB-BLOCKB.SUB-BLOCKD
END-DEFINE

With this structure, Program 1 can share the data in MASTER-BLOCKA with Program 2, Program 3 or Program
4. However, Programs 2 and 3 cannot share the data areas of SUB-BLOCKB and SUB-BLOCKC because these
data blocks are defined at the same level of the structure and thus occupy the same storage area.

Block Hierarchies

Care needs to be taken when using data block hierarchies. Let us assume the following scenario with three
programs using a data block hierarchy:

34 Copyright © Software AG 2003

Data Blocks Block Hierarchies

Programi.:

DEFINE DATA GLOBAL

USING G-BLOCK

WITH MASTER-BLOCKA.SUB-BLOCKB
END-DEFINE

*

MOVE 1234 TO SBB-DATAO1
FETCH 'PROGRAM2’
END

Program?:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA
END-DEFINE

*

FETCH 'PROGRAM3’
END

Program3:

DEFINE DATA GLOBAL

USING G-BLOCK

WITH MASTER-BLOCKA.SUB-BLOCKB
END-DEFINE
*

WRITE SBB-DATAO01
END

Explanation

® Program 1 uses the global data area G-BLOCK with MASTER-BLOCKA and SUB-BLOCKB. The
program modifies a field in SUB-BLOCKB amETCHes Program 2 which specifies only
MASTER-BLOCKA in its data definition.

® Program 2 resets (deletes the contents of) SUB-BLOCKB. The reason is that a program on Level 1 (for
example, a program called witHF&TCH statement) resets any data blocks that are subordinate to the
blocks it defines in its own data definition.

® Program 2 now FETCHes program 3 which is to display the field modified in Program 1, but it returns an
empty screen.

For details on program levels, ddeltiple Levels of Invoked Objects

Copyright © Software AG 2003 35

Accessing Data in an Adabas Database

Accessing Data in an Adabas Database

Accessing Data in an Adabas Database

This document describes various aspects of accessing data in a database with Natural.

The following topics are covered:

36

Data Definition Modules (DDMs)
Database Arrays
DEFINE DATA Views
Statements for Database Access

O READ Statement

O FIND Statement

O HISTOGRAM Statement
Multi-Fetch Clause
Database Processing Loops
Database Update - Transaction Processing
Statements ACCEPT and REJECT
AT START/END OF DATA Statements

Copyright © Software AG 2003

Data Definition Modules - DDMs Data Definition Modules - DDMs

Data Definition Modules - DDMs

The following topics are covered:

® Use of Data Definition Modules
e Listing/Displaying DDMs
® Components of a DDM

Use of Data Definition Modules

For Natural to be able to access a database file, a logical definition of the physical database file is required. Such
a logical file definition is called a data definition module (DDM).

The DDM contains information about the individual fields of the file - information which is relevant for the use
of these fields in a Natural program. A DDM constitutes a logical view of a physical database file.

For each physical file of a database, one or more DDMs can be defined.

3 >
Physical file
in database - >
. >

DDMs are defined by the Natural administrator with Predict (or, if Predict is not available, with the
corresponding Natural function).

Use the system command SYSDDM to invoke the SYSDDM utility. The SYSDDM utility is used to perform alll
functions needed for the creation and maintenance of Natural data definition modules.

For further information on the SYSDDM utility, see the sec8MEDDM Utility in the Natural Utilities
documentation and the section DDM Services in the Natural Editors documentation.

The length of a DDM name is restricted to 32 characters.

For each database field, a DDM contains the database-internal field name as well as the "external” field name,
that is, the name of the field as used in a Natural program. Moreover, the formats and lengths of the fields are
defined in the DDM, as well as various specifications that are used when the fields are output with a DISPLAY
or WRITE statement (column headings, edit masks, etc.).

Copyright © Software AG 2003 37

Listing/Displaying DDMs Data Definition Modules - DDMs

Listing/Displaying DDMs

If you do not know the name of the DDM you want, you can use the system cormi8andDM to get a list of
all existing DDMs that are available. From the list, you can then select a DDM for display.

To display a DDM whose name you know, you use the system command LISTdODMame

For example:
LIST DDM EMPLOYEES

A list of all fields defined in the DDM will then be displayed, along with information about each field, see the
following section Components of a DDM.

Components of a DDM

For each field, a DDM contains the following information:

Column | Explanation

T Thetypeof the field:

blank Elementary field. This type of field can have only one value within a record.
M Multiple-value field This type of field can have more than one value within a record.

P Periodic groupA periodic group is a group of fields that can have more than one
occurrence within a record.

G Group. A group is a number of fields defined under one common group name. This makes
it possible to reference several fields collectively by using the group name instead of the
names of all the individual fields.

* Comment line.

L Thelevelnumber assigned to the field.
Levels are used to indicate the structure and grouping of the field definitions. This is relevant with
view definitions redefinitionsandfield groups

DB The two-character databasgernal field name

Name The 3- to 32-charactexternal field nameThis is the field name used in a Natural program to
reference the field.

HD= indicates a default column header to appear above the field when the field is output ia a
DISPLAY statement. If no header is specified, the field name is used as column header.

EM= indicates a default edit mask to be used when the field is output via a DISPLAY statement.

F Theformatof the field (A=alphanumeric, N=numeric unpacked, P=packed numeric, etc.).

Len Thelengthof the field.
For numeric fields, length is specified am.m', where 'hn" is the number of digits before the
decimal point andY' is the number of digits after the decimal point.

38 Copyright © Software AG 2003

Data Definition Modules - DDMs Components of a DDM

Column | Explanation

S The type ofuppressiorassigned to the field:

N indicatesnull-value suppressigmwhich means that null values for the field will not be returned
when the field is used to construct a basic search criterion (WITH clauséNbDastatement),
in aHISTOGRAM statement, or in READ LOGICAL statement.

F indicates that the field is defined with tfieed storageoption (that is, the field is not
compressed).

A blank indicatesiormal compressigrwhich means that trailing blanks in alphanumeric fields and
leading zeros in numeric fields are suppressed.

D Thedescriptortype of the field; for example:

elementary descriptor,
non-descriptor,
phonetic descriptor.

subdescriptor,

w C T Z2 O

superdescriptor,

A blank in this column indicates that the field is not a descriptor.

A descriptor can be used as the basis of a database search. A field which has a "D" or "S" in} this
column can be used in tigY clause of th&kREAD statement. Once a record has been read fronp the
database using the READ statemerm|8PLAY statement can reference any field which has ejther
a "D" or a blank in the "D" column.

Remarks| This column can contaicommentsbout the field.

Above the list of fields, the following is displayed: the number of the file from which the DDM is derived (DDM
FNR), the number of the database where that file is stored (DDM DBID), and the "Default Sequence" field, that
is, the name of the field used to control logical sequential reading of the file if no such field is specified in the
READ LOGICAL statement of a program.

Copyright © Software AG 2003 39

Database Arrays Database Arrays

Database Arrays

Adabas supports array structures within the database in the form of multiple-value fields and periodic groups.
The following topics are covered:

Multiple-Value Fields

Periodic Groups

Referencing Multiple-Value Fields and Periodic Groups
Multiple-Value Fields Within Periodic Groups
Referencing Multiple-Value Fields Within Periodic Groups
Referencing the Internal Count of a Database Array

Multiple-Value Fields

A multiple-value field is a field which can have more than one value (up to 191) within a given record.

Example:
BARREDA SPANISH
Marne Languages
(elementary field) (multiple-value field)

Assuming that the above is a record in an employees file, the first field (Name) is an elementary field, which can
contain only one value, namely the name of the person; whereas the second field (Languages), which contains
the languages spoken by the person, is a multiple-value field, as a person can speak more than one language.

Periodic Groups

A periodic group is a group of fields (which may be elementary fields and/or multiple-value fields) that may
have more than one occurrence (up to 191) within a given record.

40 Copyright © Software AG 2003

Database Arrays Referencing Multiple-Value Fields and Periodic Groups

The different values of an multiple-value field are usually calleziirrencesthat is, the number of occurrences
is the number of values which the field contains, and a specific occurrence means a specific value. Similarly, in
the case of periodic groups, occurrences refer to a group of values.

Example:

RODRIGUEZ B-123ABC SEAT IBIZA ‘

Name Reg. Mo. Make Model
(elementary field)

Cars
(periodic group)

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field which contains
the name of a person; Cars is a periodic group which contains the automobiles owned by that person. The
periodic group consists of three fields which contain the registration number, make and model of each
automobile. Each occurrence of Cars contains the values for one automobile.

Referencing Multiple-Value Fields and Periodic Groups

To reference one or more occurrences of a multiple-value field or a periodic group, you speciéxartation
after the field name.

Examples:

The following examples use the multiple-value field LANGUAGES and the periodic group CARS from the
previous examples.

The various values of the multiple-value field LANGUAGES can be referenced as follows.

Copyright © Software AG 2003 41

Multiple-Value Fields Within Periodic Groups Database Arrays

LANGUAGES (1) References the first value ("SPANISH").

LANGUAGES (X) The value of the variable X determines the value to be referenced.

LANGUAGES (1:3) |References the first three values ("SPANISH", "CATALAN" and "FRENCH").

LANGUAGES (6:10) | References the sixth to tenth values.

LANGUAGES (X:Y) | The values of the variables X and Y determine the values to be referencgd.

The various occurrences of the periodic group CARS can be referenced in the same manner:

CARS (1) |References the first occurrence ("B-123ABC/SEAT/IBIZA").

CARS (X) |The value of the variable X determines the occurrence to be referenced.

CARS (1:2) |References the first two occurrences ("B-123ABC/ SEAT/IBIZA" and
"B-999XYZ/VW/GOLF").

CARS (4:7) |References the fourth to seventh occurrences.

CARS The values of the variables X and Y determine the occurrences to be referenced.
(X:Y)

Multiple-Value Fields Within Periodic Groups
An Adabas array can have up to two dimensions: a multiple-value field within a periodic group.

Example:

RODRIGUEZ B-123ABC 31-05-97 SEAT ‘
Name Reg. Mo. Servicing Make
(elementary field) (multiple-value
field)
Cars

(periodic group)

42 Copyright © Software AG 2003

Database Arrays Referencing Multiple-Value Fields Within Periodic Groups

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field which contains
the name of a person; Cars is a periodic group which contains the automobiles owned by that person. The
periodic group consists of three fields which contain the registration number, servicing dates and make of each
automobile. Within the periodic group Cars, the field Servicing is a multiple-value field, containing the different
servicing dates for each automobile.

Referencing Multiple-Value Fields Within Periodic
Groups

To reference one or more occurrences of a multiple-value field within a periodic group, you specify a
"two-dimensional“index notation after the field name.

Examples:

The following examples use the multiple-value field SERVICING within the periodic group CARS from the
example above. The various values of the multiple-value field can be referenced as follows:

SERVICING (1,1) References the first value of SERVICING in the first occurrence of CARS
("31-05-97")

SERVICING (1:5,1) References the first value of SERVICING in the first five occurrences of CARS

SERVICING References the first ten values of SERVICING in the first five occurrences of JARS.
(1:5,1:10)

Referencing the Internal Count of a Database Array

It is sometimes necessary to reference a multiple-value field or a periodic group without knowing how many
values/occurrences exist in a given record. Adabas maintains an internal count of the number of values in each
multiple-value field and the number of occurrences of each periodic group. This count may be REAIM a
statement by specifying "C*" immediately before the field name.

The count is returned in format/length N3. Sederencing the Internal Count for a Database Aimdiie
Statements documentation for further details.

Examples:

C*LANGUAGES | Returns the number of values of the multiple-value field LANGUAGES.

C*CARS Returns the number of occurrences of the periodic group CARS.

C*SERVICING(1) | Returns the number of values of the multiple-value field SERVICING in the first
occurrence of a periodic group (assuming that SERVICING is a multiple-value field
within a periodic group.)

Copyright © Software AG 2003 43

DEFINE DATA Views DEFINE DATA Views

DEFINE DATA Views

To be able to use database fields in a Natural program, you must specify the fialgwin a
The following topics are covered:

e Use of Database Views
e Defining a Database View

Use of Database Views
To be able to use database fields in a Natural program, you must specify the fialgsin a
In the view, you specify

e the name of th®ata Definition Modulg DDM) from which the fields are taken, and
e thenames of the database fieltiemselves (that is, their long names, not their database-internal short
names).

Defining a Database View

You define such a database view either

e within theDEFINE DATA statement of the program, or
® in alocal data area (LDA) or a global data area (GDA) outside the program,
with the DEFINE DATA statement referencing that data area (as described in the Befitiamg Fields

At Level 1, you specify the view name as follows:
1 view-name VIEW OF ddm-name

where
view-namas the name you choose for the view,
ddm-names the name of the DDM from which the fields specified in the view are taken.

At Level 2, you specify the names of the database fields from the DDM.

In the illustration below, the name of the view is "ABC", and it comprises the fields NAME, FIRST-NAME and
PERSONNEL-ID from the DDM "XYZ".

44 Copyright © Software AG 2003

DEFINE DATA Views

Fhysical File In Database

Fields:
AA
BB
CC
(8] 8]
EE

The format and length of a database field need not be specified in the view, as these are already defined in the

underlying DDM.

The view may comprise an entire DDM or only a subset of it. The order of the fields in the view need not be the
same as in the underlying DDM.

The view name is used in database access statements to determine which database is to be accessed, as described

DDOM "XyZ"
Fields:
Al PERSONNEL-ID |8
BB MAME AZ20
CC FIRST-NAME A20
DD BIRTH ME
EE JOB-TITLE AZ5 |

in Statements for Database Access

Copyright © Software AG 2003

>

Defining a Database View

Wiew

DEFIME DATA LOCAL
1ABC VIEW OF X¥Z
2 NAME
2 FIRST-MAME
2 PERSONNEL-ID
END-DEFINE

45

Statements for Database Access Statements for Database Access

Statements for Database Access

To read data from a database, the following statements are available:

READ Select a range of records from a database in a specified sequence.
FIND Select from a database those records which meet a specified search criterion.

Read only the values of one database field, or determine the number of records which meet a

HISTOGRAM g cified search criterion.

READ Statement

The following topics are covered:

Use of READ Statement

Basic Syntax of READ Statement

Limiting the Number of Records to be Read
STARTING/ENDING Clauses

WHERE Clause

Further Example of READ Statement

Use of READ Statement
TheREAD statement is used to read records from a database. The records can be retrieved from the database

® in the order in which they are physically stored in the database
(READ IN PHYSICAL SEQUENCE; or

® in the order of Adabas Internal Sequence Numbers
(READ BY ISN), or

® in the order of the values of a descriptor field
(READ IN LOGICAL SEQUENCE.

In this document, only READ IN LOGICAL SEQUENCE is discussed, as it is the most frequently used form of
the READ statement.

For information on the other two options, please refer to the descriptionRE#HD statement in the Natural
Statements documentation.

Basic Syntax of READ Statement

The basic syntax of tiREAD statement is:

READ view IN LOGICAL SEQUENCE BY descriptor

or shorter:

READ view LOGICAL BY descriptor

46 Copyright © Software AG 2003

Statements for Database Access Basic Syntax of READ Statement

viewis the name of a view defined in tb&EFINE DATA statement (as explainedEFINE DATA Views).

descriptoris the name of a database field defined in that view. The values of this field determine the order in
which the records are read from the database.

If you specify a descriptor, you need not specifykégword"LOGICAL":

READ view BY descriptor

If you do not specify a descriptor, the records will be read in the order of values of the field defined as default
descriptor (under "Default Sequence") in BieM. However, if you specify no descriptor, you must specify the
keyword'LOGICAL":

READ view LOGICAL

Example:

** Example Program 'READX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
END-DEFINE
READ (6) MYVIEW BY NAME
DISPLAY NAME PERSONNEL-ID JOB-TITLE
END-READ
END

With theREAD statement in the above example, records from the EMPLOYEES file are read in alphabetical
order of their last names.

The above program will produce the following output, displaying the information of each employee in
alphabetical order of the employees’ last names:

Page 1 99-08-19 13:16:04
NAME PERSONNEL CURRENT
ID POSITION
ABELLAN 60008339 MAQUINISTA
ACHIESON 30000231 DATA BASE ADMINISTRATOR
ADAM 50005800 CHEF DE SERVICE
ADKINSON 20008800 PROGRAMMER
ADKINSON 20009800 DBA
ADKINSON 2001100

If you wanted to read the records to create a report with the employees listed in sequential order by date of birth,
the appropriate READ statement would be:

READ MYVIEW BY BIRTH

Copyright © Software AG 2003 47

Limiting the Number of Records to be Read Statements for Database Access

You can only specify a field which is defined as a "descriptor” in the undeiir (it can also be a
subdescriptor, superdescriptor or hyperdescriptor).

Limiting the Number of Records to be Read

As shown in the previous example program, you can limit the number of records to be read by specifying a
number in parentheses after the keywREAD:

READ (6) MYVIEW BY NAME
In that example, the READ statement would read no more than 6 records.

Without the limit notation, the above READ statement would edlagecords from the EMPLOYEES file in the
order of last names from A to Z.

STARTING/ENDING Clauses

The READ statement also allows you to qualify the selection of records basedaiutbef a descriptor field.
With anEQUAL TO/STARTING FROMoption in theBY or WITH clause, you can specify the value at which
reading should begin. By addingrlelRU/ENDING AT option, you can also specify the value in the logical
sequence at which reading should end.

For example, if you wanted a list of those employees in the order of job titles starting with "TRAINEE" and
continuing on to "Z", you would use one of the following statements:

READ MYVIEW WITH JOB-TITLE = "TRAINEE’
READ MYVIEW WITH JOB-TITLE STARTING from 'TRAINEE’

READ MYVIEW BY JOB-TITLE = "TRAINEE’
READ MYVIEW BY JOB-TITLE STARTING from 'TRAINEE’

Note that the value to the right of the equal sign (SDARTING FROMoption must be enclosed in
apostrophes. If the value is numeric, tieigt notationis not required.

If aBY option is used, &ITH option cannot be used and vice versa.

The sequence of records to be read can be even more closely specified by adding an end lifftitRlitloa
ENDING AT clause.

To read just the records with the job title "TRAINEE", you would specify:
READ MYVIEW BY JOB-TITLE STARTING from 'TRAINEE’ THRU 'TRAINEE’
READ MYVIEW WITH JOB-TITLE EQUAL TO 'TRAINEE’
ENDING AT 'TRAINEFE’
To read just the records with job titles that begin with "A" or "B", you would specify:

READ MYVIEW BY JOB-TITLE ='A’ THRU 'C’
READ MYVIEW WITH JOB-TITLE STARTING from 'A’ ENDING AT 'C’

The values are read up to and including the value specifiedl&RU/ENDING AT. In the two examples
above, all records with job titles that begin with "A" or "B" are read; if there were a job title "C", this would also
be read, but not the next higher value "CA".

WHERE Clause

The WHERE clause may be used to further qualify which records are to be read.

48 Copyright © Software AG 2003

Statements for Database Access WHERE Clause

For instance, if you wanted only those employees with job titles starting from "TRAINEE" who are paid in US
currency, you would specify:

READ MYVIEW WITH JOB-TITLE = "TRAINEE’
WHERE CURR-CODE = 'USD’

The WHERE clause can also be used withBieclause as follows:

READ MYVIEW BY NAME
WHERE SALARY = 20000

The WHERE clause differs from ti//WITH clause in two respects:

® The field specified in the WHERE clause need not be a descriptor.
® The expression following the WHERE option is a logical condition.

The following logical operators are possible in a WHERE clause:

EQUAL EQ|=
NOT EQUAL TO NE | -=
LESS THAN LT |<
LESS THAN OR EQUAL TO LE | <=
GREATER THAN GT|>
GREATER THAN OR EQUAL TO |GE|>=

The following program illustrates the use of BIFARTING FROM, ENDING ATandWHERE clauses:

** Example Program 'READX02’
DEFINE DATA LOCAL
1 MYEMP VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 INCOME (1:2)
3 CURR-CODE
3 SALARY
3 BONUS (1:1)
END-DEFINE
*
READ (3) MYVIEW WITH JOB-TITLE = 'TRAINEE' THRU 'TRAINEE’
WHERE CURR-CODE (*) ='USD’
DISPLAY NOTITLE NAME / JOB-TITLE 5X INCOME (1:2)
SKIP 1
END-READ
END

It produces the following output:

Copyright © Software AG 2003 49

FIND Statement Statements for Database Access

NAME INCOME
CURRENT
POSITION CURRENCY ANNUAL BONUS

CODE SALARY

SENKO usD 23000 0
TRAINEE usD 21800 0
BANGART usD 25000 0
TRAINEE usD 23000 0
LINCOLN uUsD 24000 0
TRAINEE usD 22000 0

Further Example of READ Statement
See the following example program in library SYSEXPG:

e READXO03

FIND Statement

The following topics are covered:

Use of FIND Statement

Basic Syntax of FIND Statement

Limiting the Number of Records to be Processed
WHERE Clause

Example of WHERE Clause

IF NO RECORDS FOUND Condition

Example of IF NO RECORDS FOUND Clause
Further Examples of FIND Statement

Use of FIND Statement

TheFIND statement is used to select from a database those records which meet a specified search criterion.

Basic Syntaxof FIND Statement

The basic syntax of the FIND statement is:

FIND RECORDS IN view WITH field = value
or shorter:
FIND view WITH field = value

50 Copyright © Software AG 2003

Statements for Database Access Limiting the Number of Records to be Processed

where

viewis the name of a view defined in the DEFINE DATA statement (as explained in dSeEffONE DATA
Views),

field is the name of a database field defined in that view.

You can only specify field which is defined as a "descriptor" in the underlyidigM (it can also be a
subdescriptor, superdescriptor, hyperdescriptor or phonetic descriptor).

For the complete syntax, refer to fREND statement documentation.

Limiting the Number of Records to be Processed

In the same way as with tiIREAD statement, you can limit the number of records to be processed by specifying
a number in parentheses after the keyword FIND:

FIND (6) RECORDS IN MYVIEW WITH NAME = 'CLEGG’
In the above example, only the first 6 records that meet the search criterion would be processed.
Without the limit notation, all records that meet the search criterion would be processed.

Note:
If the FIND statement contains/dHERE clause (see below), records which are rejected as a result of the
WHERE clause areot counted against the limit.

WHERE Clause

With theWHERE clause of thé&IND statement, you can specify an additional selection criterion which is
evaluatedhfter a record (selected with thNgITH clause) has been read dreforeany processing is performed
on the record.

Example of WHERE Clause

** Example Program 'FINDXO01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2 CITY
END-DEFINE
*
FIND MYVIEW WITH CITY ='PARIS’
WHERE JOB-TITLE ="INGENIEUR COMMERCIAL’
DISPLAY NOTITLE CITY JOB-TITLE PERSONNEL-ID NAME
END-FIND
END

Note that in this example only those records which meet the criteria of the WITH afalibe WHERE clause
are processed in tHSPLAY statement.

Copyright © Software AG 2003 51

IF NO RECORDS FOUND Condition Statements for Database Access

CITY CURRENT PERSONNEL NAME
POSITION ID
PARIS INGENIEUR COMMERCIAL 50007300 CAHN
PARIS INGENIEUR COMMERCIAL 50006500 MAZUY
PARIS INGENIEUR COMMERCIAL 50004400 VALLY
PARIS INGENIEUR COMMERCIAL 50002800 BRETON
PARIS INGENIEUR COMMERCIAL 50001000 GIGLEUX

IF NO RECORDS FOUND Condition

If no records are found that meet the search criteria specified \WIftd andWHERE clauses, the statements
within the FIND processing loop are not executed (for the previous example, this would meanDifaPtheY
statement would not be executed and consequently no employee data would be displayed).

However, the FIND statement also providesFahlO RECORDS FOUNL[zlause, which allows you to specify
processing you wish to be performed in the case that no records meet the search criteria.

Example of IF NO RECORDS FOUND Clause

** Example Program 'FINDX02’

DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME

END-DEFINE

*

FIND MYVIEW WITH NAME = 'BLACKMORE’
IF NO RECORDS FOUND

WRITE 'NO PERSON FOUND.’

END-NOREC
DISPLAY NAME FIRST-NAME

END-FIND

END

The above program selects all records in which the field NAME contains the value "BLACKMORE". For each
selected record, the name and first name are displayed. If no record with NAME ='BLACKMORE’ is found on
the file, theWRITE statement within thi= NO RECORDS FOUNLZlause is executed:

Page 1 97-08-19 11:44:00

NAME FIRST-NAME

NO PERSON FOUND.

Further Examples of FIND Statement

See the following example programs in library SYSEXPG:

52 Copyright © Software AG 2003

Statements for Database Access HISTOGRAM Statement

FINDXO7
FINDXO08
FINDX09
FINDX10
FINDX11

HISTOGRAM Statement

The following topics are covered:

Use of HISTOGRAM Statement

Syntaxof HISTOGRAM Statement
Limiting the Number of Values to be Read
STARTING/ENDING Clauses

WHERE Clause

Example of HISTOGRAM Statement

Use of HISTOGRAM Statement

TheHISTOGRAM statement is used to either read only the values of one database field, or determine the
number of records which meet a specified search criterion.

The HISTOGRAM statement does not provide access to any database fields other than the one specified in the
HISTOGRAM statement.

Syntax of HISTOGRAM Statement

The basic syntax of the HISTOGRAM statement is:

HISTOGRAM VALUE IN view FOR field

or shorter:

HISTOGRAMview FOR field

where

viewis the name of a view defined in the DEFINE DATA statement (as explained earlier in BdefbhE
DATA Views),

field is the name of the database field defined in that view.

For the complete syntax, refer to HHESTOGRAM statement documentation.

Limiting the Number of Values to be Read

In the same way as with tlREAD statement, you can limit the number of values to be read by specifying a
number in parentheses after the keyword HISTOGRAM:

HISTOGRAM (6) MYVIEW FOR NAME

Copyright © Software AG 2003 53

STARTING/ENDING Clauses Statements for Database Access

In the above example, only the first 6 values of the field NAME would be read.

Without the limit notation, all values would be read.

STARTING/ENDING Clauses

Like theREAD statement, the HISTOGRAM statement also provid@$ARTING FROM clause and an
ENDING AT (or THRU)clause to narrow down the range of values to be read by specifying a starting value and
ending value.

Examples:

HISTOGRAM MYVIEW FOR NAME STARTING from 'BOUCHARD’
HISTOGRAM MYVIEW FOR NAME STARTING from 'BOUCHARD’ ENDING AT 'LANIER’
HISTOGRAM MYVIEW FOR NAME from 'BLOOM’ THRU 'ROESER’

WHERE Clause

The HISTOGRAM statement also provideSMHERE clause which may be used to specify an additional
selection criterion that is evaluatefier a value has been read dmforeany processing is performed on the
value. The field specified in the WHERE clause must be the same as in the main clause of the HISTOGRAM
statement.

Example of HISTOGRAM Statement

** Example Program 'HISTOXO01’

DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES
2 CITY

END-DEFINE

*

LIMIT 8
HISTOGRAM MYVIEW CITY STARTING from 'M’
DISPLAY NOTITLE CITY 'NUMBER OF/PERSONS’ *NUMBER *COUNTER
END-HISTOGRAM
END

In this program, the system variabl&lUMBER and*COUNTER are also evaluated by the HISTOGRAM
statement, and output with tB#SPLAY statement. *NUMBER contains the number of database records that
contain the last value read; *COUNTER contains the total number of values which have been read.

CITY NUMBER OF CNT
PERSONS

MADISON 3 1
MADRID 41 2
MAILLY LE CAMP 1 3
MAMERS 1 4
MANSFIELD 4 5
MARSEILLE 2 6
MATLOCK 1 7
MELBOURNE 2 8

54 Copyright © Software AG 2003

Multi-Fetch Clause Multi-Fetch Clause

Multi-Fetch Clause

This document covers the multi-fetch record retrieval functionality for Adabas databases. This feature is
available both under Windows/UNIX and on mainframes, however, there are differences in the usage of
multi-fetch on those systems.

The multi-fetch functionality is only supported for Adabas.
The following topics are covered:

® Multi-Fetch on Mainframes
® Multi-Fetch under Windows and UNIX

Multi-Fetch on Mainframes

The following topics are covered:

Use of Multi-Fetch Feature on Mainframes
Considerations for Multi-Fetch Usage
Size of the Multi-Fetch Buffer

Support of TEST DBLOG

Use of Multi-Fetch Feature on Mainframes

In standard mode, Natural does not read multiple records with a single database call; it always operates in a
one-record-per-fetch mode. This kind of operation is solid and stable, but can take some time if a large number
of database records are being processed.

To improve the performance of those programs, you can use the Multi-Fetch claudelNXhBEAD or
HISTOGRAM statements. This allows you to define the Multi-Fetch-Factor, a numeric value that specifies the
number of records read per database access.

FIND
READ MULTI-FETCH [OF] <multi-fetch-factor>
HISTOGRA

Where the<multi-fetch-factor>is either a constant or a variable with a format integer (14).

At statement execution time, the runtime checks<ifraulti-fetch-factor>greater than 1 is supplied for the
database statement.

If the <multi-fetch-factor>is

Copyright © Software AG 2003 55

Considerations for Multi-Fetch Usage Multi-Fetch Clause

less than or equal to | the database call is continued in the usual one-record-per-access mode.

greater than 1

the database call is prepared dynamically to read multiple records (e.g. 10) withja
single database access into an auxiliary buffer (multi-fetch buffer). If successful]the
first record is transferred into the underlying data view. Upon the execution of the
next loop, the data view is filled directly from the multi-fetch buffer, without datalpase
access. After all records are fetched from the multi-fetch buffer, the next loop repults
in the next record set being read from the database. If the database loop is ternjinated
(either by end-of-recordESCAPE STOR etc.), the content of the multi-fetch buffe
is released.

=

Considerations for Multi-Fetch Usage

A multi-fetch access is only supported for a browse loop; in other words, when the records are read with "no
hold".

The program does not receive "fresh" records from the database for every loop, but operates with images
retrieved at the most recent multi-fetch access.

If a loop repositioning is triggered foREAD / HISTOGRAM statement, the content of the multi-fetch

buffer at that point is released.

If a dynamic direction change (IN DYNAMIC...SEQUENCE) is coded for a READ / HISTOGRAM
statement, the multi-fetch feature is not possible and leads to a corresponding syntax error at compilation.
The first record of &IND loop is retrieved with the initial S1 command. Since Adabas multi-fetch is just
defined for all kinds of Lx commands, it first can be used from the second record.

The size occupied by a database loop in the multi-fetch buffer is determined according to the rule:

((record-buffer-length + isn-buffer-entry-length) * multi-fetch-factor) + 4 + header-length

((size-of-view-fields + 20) * multi-fetch-factor) + 4 + 128

In order to keep the required space small, the multi-fetch factor is automatically reduced at runtime, if
O the "loop-limit" (e.g.READ (2) ..) is smaller, but only if no WHERE clause is involved;
O the "ISN quantity” (folFIND statement only) is smaller;
O the resulting size of the Record-Buffer or ISN-Buffer exceeds 32KB.
Moreover, the multi-fetch option is completely ignored at runtime, if
O the multi-fetch factor contains a value less equal 1;
O the multi-fetch buffer is not available or does not have enough free space (for more details, refer to
Size of the Multi-Fetch Buffelbelow).

Size of the Multi-Fetch Buffer

In order to control the amount of storage available for multi-fetch purposes, you can limit the maximum size of
the multi-fetch buffer.

Inside theNATPARM definition, you can make a static assignment via the parameter KiaDiS

NTDS MULFETCH,nn

At session start, you can also use the profile pararb&er

DS=(MULFETCHnn)

56

Copyright © Software AG 2003

Multi-Fetch Clause Multi-Fetch under Windows and UNIX

where ‘hn' represents the complete size allowed to be allocated for multi-fetch purposes (in KB). The value may
be set in the rang® ¢ 1024, with a default value dd4. Setting a high value does not necessarily mean having a
buffer allocated of that size, since the multi-fetch handler makes dynamic allocations and resizes, depending on
what is really needed to execute a multi-fetch database statement. If no multi-fetch database statement is
executed in a Natural session, the multi-fetch buffer will never be created, regardless of which value was set.

If value 0 is specified, the multi-fetch processing is completely disabled, no matter if a database access statement
contains a "MULTI-FETCH OF .." clause or not. This allows to completely switch off all multi-fetch activities
when there is not enough storage available in the current environment or for debugging purposes.

Note:

Due to existing Adabas limitations, you may not have a Record-Buffer or ISN-Buffer larger than 32 KB.
Therefore you need only a maximum of 64 KB space in the multi-fetch buffer for a Biftdde READ or
HISTOGRAM loop. The required value setting for the multi-fetch buffer depends on the number of nested
database loops you want to serve with multi-fetch.

Support of TEST DBLOG

When multi-fetch is used, real database calls are only submitted to get a new set of records. However, if
somebody likes to debug his program with TieST DBLOGfacility, he would neither be able to look at the

records processed by his program nor to SNAP at a specific position, because they are filled internally from the
multi-fetch buffer.

In order to improve this situation, the multi-fetch handler also triggers calls to TEST DBLOG for every record
moved from the multi-fetch buffer. To make these special database calls visible (in the TEST DBLOG list), the
command Optionl is set to "<".

Example: TEST DBLOG List Break-Out

NoCmd DB FNR Rsp ISN 1SQ CID CID(Hex) OP Pgm Line

281 177 4 89 6 ?7? 04000101 TESTOO6A 0400

3 L1 177 4 108 6 ??? 04000101 MN TESTOO6A 0400
4 L1 177 4 299 6 ?7?? 04000101 <N TESTOO6A 0400
511 177 4 418 6 ?7?? 04000101 <N TESTOO6A 0400

Where column No represents the following:

2 is an ordinary database call without any multi-fetching.

is a "real" database call that reads a set of records via multi-fetch (see "M" in column OP) and refurns
the first record back to the program. The data displayed in the Record Buffer and ISN Buffer do fot

3 | correspond to the statement in the program, because they contain the values (especially for the
ISN-Buffer) of all the records being fetched by the database. The data returned to the program ig just the
first record, the remaining data will be stored in the multi-fetch buffer.

are "no real" database calls, but only entries that document that the program has received these|records
4-5 | from the multi-fetch buffer (see "<" in column OP). All the data in the CB, FB, RB, SB, VB and IB|are
exactly the same, like when they were fetched from the database.

Multi-Fetch under Windows and UNIX

By default, Natural uses single-fetch to retrieve data from Adabas databases. This default can be configured
using the profile paramet®&FSET.

Copyright © Software AG 2003 57

Multi-Fetch under Windows and UNIX Multi-Fetch Clause

Values "ON" (multi-fetch) and "OFF" (single-fetch) define the default behavior. If MFSET is set to "NEVER",
Natural always uses single-fetch mode and ignores any settings at statement level.

Multi-fetch processing is supported for the following statements that do not involve database modification:

e FIND
e READ
e HISTOGRAM

To minimize the number of required Adabas calls, several results are retrieved in one call.

If nested database loops that refer to the same Adabas file dORRIATE statements in one of the inner loops,
Natural continues processing the outer loops with the updated values. This implies in multi-fetch mode, that an
outer logical READ loop has to be repositioned if an inner database loop updates the value of the descriptor that
is used for sequence control in the outer loop. If this attempt leads to a conflict for the current descriptor, an error
is returned. To avoid this situation, we recommend that you disable multi-fetch in the outer database loops.

In general, multi-fetch mode improves performance when accessing Adabas databases. In some cases, however,
it might be advantageous to use single-fetch to enhance performance, especially if database modifications are
involved.

The default processing mode can be overridden at statement level. For further information on the syntax, see the
FIND, READ or HISTOGRAM statements, subsection MULTI-FETCH Clause.

58 Copyright © Software AG 2003

Database Processing Loops Database Processing Loops

Database Processing Loops

This document discusses processing loops required to process data that have been selected from a database as a
result of a FIND, READ or HISTOGRAM statement.

The following topics are covered:

Creation of Database Processing Loops
Hierarchies of Processing Loops
Example of Nested FIND Loops Accessing the Same File

[J
[J
[J
o Further Examples of Nested READ and FIND Statements

Creation of Database Processing Loops

Natural automatically creates the necessary processing loops which are required to process data that have been
selected from a database as a resultFif\NdD, READ or HISTOGRAM statement.

Example:

In the following exampe, thEIND loop selects all records from the EMPLOYEES file in which the field NAME
contains the value "ADKINSON" and processes the selected records. In this example, the processing consists of
displaying certain fields from each record selected.

** Example Program 'FINDXO03'’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2CITY
END-DEFINE
*
FIND MYVIEW WITH NAME ="ADKINSON’
DISPLAY NAME FIRST-NAME CITY
END-FIND
END

If the FIND statement containedVHERE clause in addition to th&/ITH clause, only those records that were
selected as a result of the WITH claasel met the WHERE criteria would be processed.

The following diagram illustrates the flow logic of a database processing loop:

Copyright © Software AG 2003 59

Hierarchies of Processing Loops Database Processing Loops

select records | -

A J

read records | b=

v

A Processing
Loop

v ves

process records -

v

no

v
Exit Processing Loop

Hierarchies of Processing Loops

The use of multipl€&IND and/orREAD statements creates a hierarchy of processing loops, as shown in the
following example:

Example of Processing Loop Hierarchy

** Example Program 'FINDX04'
DEFINE DATA LOCAL
1 PERSONVIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
1 AUTOVIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE
2 MODEL
END-DEFINE

*

60 Copyright © Software AG 2003

Database Processing Loops Example of Processing Loop Hierarchy

EMP. FIND PERSONVIEW WITH NAME ="ADKINSON’
VEH. FIND AUTOVIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMP.)
DISPLAY NAME MAKE MODEL
END-FIND
END-FIND
END

The above program selects from the EMPLOYEES file all people with the name "ADKINSON". Each record
(person) selected is then processed as follows:

1. The second FIND statement is executed to select the automobiles from the VEHICLES file, using as
selection criterion the PERSONNEL-IDs from the records selected from the EMPLOYEES file with the
first FIND statement.

2. The NAME of each person selected is displayed; this information is obtained from the EMPLOYEES file.
The MAKE and MODEL of each automobile owned by that person is also displayed; this information is
obtained from the VEHICLES file.

The second FIND statement creates an inner processing loop within the outer processing loop of the first FIND
statement, as shown in the following diagram.

The diagram illustrates the flow logic of the hierarchy of processing loops in the previous example program:

Copyright © Software AG 2003 61

Example of Nested FIND Loops Accessing the Same File Database Processing Loops

select records from |
EMPLOYEES filz

>

Y

YEs !
P Exit

no
A v

Outer read records ‘
Loop

v

selact records from
VEHICLES file

<

¥

yes

Inner
no Loop
b

read record

v

display data

¥

Example of Nested FIND Loops Accessing the Same File

It is also possible to construct a processing loop hierarchy in which the same file is used at both levels of the
hierarchy:

** Example Program 'FINDXO05’
DEFINE DATA LOCAL
1 PERSONVIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME

62 Copyright © Software AG 2003

Database Processing Loops Further Examples of Nested READ and FIND Statements

2 CITY
1 #NAME (A40)
END-DEFINE
*
WRITE TITLE LEFT JUSTIFIED
'PEOPLE IN SAME CITY AS:’ #NAME / 'CITY: CITY SKIP 1
FIND PERSONVIEW WITH NAME = 'JONES’
WHERE FIRST-NAME = 'LAUREL’
compress NAME FIRST-NAME INTO #NAME
FIND PERSONVIEW WITH CITY = CITY
DISPLAY NAME FIRST-NAME CITY
END-FIND
END-FIND
END

The above program first selects all people with name "JONES" and first name "LAUREL" from the
EMPLOYEES file. Then all who live in the same city are selected from the EMPLOYEES file and a list of these
people is created. All field values displayed by the DISPLAY statement are taken from the second FIND
statement.

PEOPLE IN SAME CITY AS: JONES LAUREL
CITY: BALTIMORE

NAME FIRST-NAME CITY
JENSEN MARTHA BALTIMORE
LAWLER EDDIE BALTIMORE
FORREST CLARA BALTIMORE
ALEXANDER GIL BALTIMORE
NEEDHAM SUNNY BALTIMORE
ZINN CARLOS BALTIMORE
JONES LAUREL BALTIMORE

Further Examples of Nested READ and FIND Statements

See the following example programs in library SYSEXPG:

e READXO04
e LIMITXO01

Copyright © Software AG 2003 63

Database Update - Transaction Processing Database Update - Transaction Processing

Database Update - Transaction Processing

This document describes how Natural performs database updating operations based on transactions.
The following topics are covered:

® | ogical Transaction

Example of STORE Statement

Record Hold Logic

Example of GET Statement

Backing Out a Transaction

Restarting a Transaction

Example of Using Transaction Data to Restart a Transaction

Logical Transaction

Natural performs database updating operations based on transactions, which means that all database update
requests are processed in logical transaction units. A logical transaction is the smallest unit of work (as defined
by you) which must be performed in its entirety to ensure that the information contained in the database is
logically consistent.

A logical transaction may consist of one or more update statenbEptE[TE, STORE UPDATE) involving
one or more database files. A logical transaction may also span multiple Natural programs.

A logical transaction begins when a record is put on "hold"; Natural does this automatically when the record is
read for updating, for example, ifdND loop contains an UPDATE or DELETE statement.

The end of a logical transaction is determined bigld® TRANSACTIONstatement in the program. This
statement ensures that all updates within the transaction have been successfully applied, and releases all records
that were put on "hold" during the transaction.

Example:

DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES
2 NAME

END-DEFINE

FIND MYVIEW WITH NAME ="SMITH’
DELETE
END TRANSACTION

END-FIND

END

Each record selected would be put on "hold", deleted, and then - WHENEh@RANSACTION statement is
executed - released from "hold".

Note:

The Natural profile paramet@PRB as set by the Natural administrator, determines whether or not Natural will
generate an END TRANSACTION statement at the end of each Natural program. Ask your Natural
administrator for details.

64 Copyright © Software AG 2003

Database Update - Transaction Processing Example of STORE Statement

Example of STORE Statement

See the following example program in library SYSEXPG:

e STOREXO01

Record Hold Logic

If Natural is used with Adabas, any record which is to be updated will be placed in "hold" status EINf} an
TRANSACTION or BACKOUT TRANSACTION statement is issued or the transaction time limit is exceeded.

When a record is placed in "hold" status for one user, the record is not available for update by another user.
Another user who wishes to update the same record will be placed in "wait" status until the record is released
from "hold" when the first user ends or backs out his/her transaction.

To prevent users from being placed in wait status, the session pardfk(evait Hold) can be used (see the
Natural Parameter Referendecumentation).

When you use update logic in a program, you should consider the following:

® The maximum time that a record can be in hold status is determined by the Adabas transaction time limit
(Adabas parameter TT). If this time limit is exceeded, you will receive an error message and all database
modifications done since the |&8ND TRANSACTIONwill be made undone.

® The number of records on hold and the transaction time limit are affected by the size of a transaction, that
is, by the placement of the END TRANSACTION statement in the program. Restart facilities should be
considered when deciding where to issue an END TRANSACTION. For example, if a majority of records
being processed anet to be updated, th@ET statement is an efficient way of controlling the "holding" of
records. This avoids issuing multiple END TRANSACTION statements and reduces the number of ISNs on
hold. When you process large files, you should bear in mind that the GET statement requires an additional
Adabas call. An example of a GET statement is shown below.

Example of GET Statement

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 SALARY (1)
END-DEFINE
RD. READ EMPLOY-VIEW BY NAME
IF SALARY (1) > 30000
GE. GET EMPLOY-VIEW *ISN (RD.)
compute SALARY (1) = SALARY (1) * 1.15
UPDATE (GE.)
END TRANSACTION
END-IF
END-READ
END

On mainframe computers, the placing of records in "hold" status is also controlled by the profile p&graster
set by the Natural administrator.

Copyright © Software AG 2003 65

Backing Out a Transaction Database Update - Transaction Processing

Backing Out a Transaction

During an active logical transaction, that is, beforeBN® TRANSACTION statement is issued, you can

cancel the transaction by usinBACKOUT TRANSACTION statement. The execution of this statement

removes all updates that have been applied (including all records that have been added or deleted) and releases
all records held by the transaction.

Restarting a Transaction

With theEND TRANSACTIONSstatement, you can also store transaction-related information. If processing of
the transaction terminates abnormally, you can read this information ®ETa RANSACTION DATA
statement to ascertain where to resume processing when you restart the transaction.

Example of Using Transaction Data to Restart a
Transaction

The following program updates the EMPLOYEES and VEHICLES files. After a restart operation, the user is
informed of the last EMPLOYEES record successfully processed. The user can resume processing from that
EMPLOYEES record. It would also be possible to set up the restart transaction message to include the last
VEHICLES record successfully updated before the restart operation.

** Example Program 'GETTRXO01’

DEFINE DATA LOCAL

01 PERSON VIEW OF EMPLOYEES
02 PERSONNEL-ID (A8)

02 NAME (A20)

02 FIRST-NAME (A20)
02 MIDDLE-I (A1)

02 CITY (A20)

01 AUTO VIEW OF VEHICLES
02 PERSONNEL-ID (A8)

02 MAKE (A20)

02 MODEL (A20)
01 ET-DATA

02 #APPL-ID (A8) INIT <’ ">

02 #USER-ID (AB)

02 #PROGRAM (AB)

02 #DATE (A10)

02 #TIME (AB)

02 #PERSONNEL-NUMBER (A8)
END-DEFINE

*

GET TRANSACTION DATA #APPL-ID #USER-ID #PROGRAM
#DATE #TIME #PERSONNEL-NUMBER
*
IF #APPL-ID NOT ='NORMAL’ /* IF LAST EXECUTION ENDED ABNORMALLY
AND #APPL-ID NOT ="’
INPUT (AD=OIL)
/1 20T **** LAST SUCCESSFUL TRANSACTION *** (1)

/20T Ak

/Il 25T 'APPLICATION:’ #APPL-ID
/32T 'USER:" #USER-ID
/29T 'PROGRAM:" #PROGRAM

/24T 'COMPLETED ON: #DATE 'AT #TIME

/ 20T 'PERSONNEL NUMBER: #PERSONNEL-NUMBER
END-IF
REPEAT

66 Copyright © Software AG 2003

Database Update - Transaction Processing Example of Using Transaction Data to Restart a Transaction

INPUT (AD=MIL) // 20T 'ENTER PERSONNEL NUMBER:' #PERSONNEL-NUMBER
IF #PERSONNEL-NUMBER = 99999999
ESCAPE bottom
END-IF
FIND1. FIND PERSON WITH PERSONNEL-ID = #PERSONNEL-NUMBER
IF NO RECORDS FOUND
REINPUT 'SPECIFIED NUMBER DOES NOT EXIST; ENTER ANOTHER ONE.’
END-NOREC
FIND2. FIND AUTO WITH PERSONNEL-ID = #PERSONNEL-NUMBER
IF NO RECORDS FOUND
WRITE 'PERSON DOES NOT OWN ANY CARS’
END-NOREC
IF *COUNTER (FIND1.) =1 /* FIRST PASS THROUGH THE LOOP
INPUT (AD=M)
/ 20T 'EMPLOYEES/AUTOMOBILE DETAILS’ (1)
/20T’ ’
/Il 20T 'NUMBER:" PERSONNEL-ID (AD=0)
/22T 'NAME: NAME '’ FIRST-NAME '’ MIDDLE-I
/22T 'CITY: CITY
/22T 'MAKE: MAKE
/21T 'MODEL: MODEL
UPDATE (FIND1.) /* UPDATE THE EMPLOYEES FILE

ELSE /* SUBSEQUENT PASSES THROUGH THE LOOP
INPUT NO ERASE (AD=M) //llll// 20T MAKE / 20T MODEL
END-IF

UPDATE (FIND2.) /* UPDATE THE VEHICLES FILE

MOVE *APPLIC-ID TO #APPL-ID

MOVE *INIT-USER TO #USER-ID

MOVE *PROGRAM TO #PROGRAM

MOVE *DAT4E TO #DATE

MOVE *TIME TO #TIME

END TRANSACTION #APPL-ID #USER-ID #PROGRAM
#DATE #TIME #PERSONNEL-NUMBER

END-FIND /* FOR VEHICLES (FIND2.)
END-FIND /* FOR EMPLOYEES (FINDL1.)
END-REPEAT /* FOR REPEAT

STOP /* Simulate abnormal transaction end
END TRANSACTION 'NORMAL '’
END

Copyright © Software AG 2003

67

Selecting Records Using ACCEPT/REJECT

Selecting Records Using ACCEPT/REJECT

Selecting Records Using ACCEPT/REJECT

This document discusses the statements ACCEPT and REJECT which are used to select records based on

user-specified logical criteria.
The following topics are covered:

Statements Usable with ACCEPT and REJECT
Example of ACCEPT Statement

Example of ACCEPT Statement with AND Operator
Example of REJECT Statement with OR Operator

Logical Condition Criteria in ACCEPT/REJECT Statements

Further Examples of ACCEPT and REJECT Statements

Statements Usable with ACCEPT and REJECT

The statement&aCCEPTandREJECTcan be used in conjunction with the database access statements:

e READ
e FIND
e HISTOGRAM

Example of ACCEPT Statement

** Example Program 'ACCEPX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 CURR-CODE (1:1)
2 SALARY (1:1)
END-DEFINE

READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = 'USD’

ACCEPT IF SALARY (1) >= 40000
DISPLAY NAME JOB-TITLE SALARY (1)

END-READ
END
Page 1 97-08-13 17:26:33
NAME CURRENT ANNUAL
POSITION SALARY
ADKINSON DBA 46700
ADKINSON MANAGER 47000
ADKINSON MANAGER 47000
AFANASSIEV DBA 42800
ALEXANDER DIRECTOR 48000
ANDERSON MANAGER 50000
ATHERTON ANALYST 43000
ATHERTON MANAGER 40000
68 Copyright © Software AG 2003

Selecting Records Using ACCEPT/REJECT Logical Condition Criteria in ACCEPT/REJECT Statements

Logical Condition Criteria in ACCEPT/REJECT
Statements

The statement&aCCEPTandREJECTallow you to specify logical conditions in addition to those that were
specified inWITH andWHERE clauses of thREAD statement.

The logical condition criteria in the IF clause of MBCEPTREJECTstatement are evaluatefter the record
has been selected and read.

Logical condition operators include the following ($@gical Condition Criterian the Natural Statements
documentation for more detailed information):

EQUAL EQ|:=
NOT EQUAL TO |NE|-=
LESS THAN LT |<
LESS EQUAL LE | <=

GREATER THAN |GT|>
GREATER EQUAL |GE|>=

Logical condition criteria iIRCCEPTREJECTstatements may also be connected with the Boolean operators
AND, OR, and NOT. Moreover, parentheses may be used to indicate logical grouping; see the following
examples.

Example of ACCEPT Statement with AND Operator

The following program illustrates the use of the Boolean operator AND AC&EPT statement.

** Example Program '"ACCEPX02’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 CURR-CODE (1:1)
2 SALARY (1:1)
END-DEFINE
READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) ='USD’
ACCEPT IF SALARY (1) >= 40000
AND SALARY (1) <= 45000
DISPLAY NAME JOB-TITLE SALARY (1)
END-READ
END

Example of REJECT Statement with OR Operator

The following program, which uses the Boolean operator OR in a REJECT statement, produces the same output
as the ACCEPT statement in the example above, as the logical operators are reversed.

Copyright © Software AG 2003 69

Further Examples of ACCEPT and REJECT Statements Selecting Records Using ACCEPT/REJECT

** Example Program 'ACCEPX03’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 CURR-CODE (1:1)
2 SALARY (1:1)
END-DEFINE
READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = 'USD’
REJECT IF SALARY (1) < 40000
OR SALARY (1) > 45000
DISPLAY NAME JOB-TITLE SALARY (1)

END-READ
END
Page 1 97-08-18 12:21:09
NAME CURRENT ANNUAL
POSITION SALARY
AFANASSIEV DBA 42800
ATHERTON ANALYST 43000
ATHERTON MANAGER 40000

Further Examples of ACCEPT and REJECT Statements

See the following example programs in library SYSEXPG:

e ACCEPX04
e ACCEPX05
e ACCEPX06

70 Copyright © Software AG 2003

AT START/END OF DATA Statements AT START/END OF DATA Statements

AT START/END OF DATA Statements

This document discusses the use of the statements AT START OF DATA and AT END OF DATA.
The following topics are covered:

AT START OF DATA Statement

AT END OF DATA Statement

Example of AT START OF DATA and AT END OF DATA Statements
Further Examples of AT START OF DATA and AT END OF DATA

AT START OF DATA Statement

The AT START OF DATA statement is used to specify any processing that is to be performed after the first of a
set of records has been read in a database processing loop.

The AT START OF DATA statement must be placed within the processing loop.

If the AT START OF DATA processing produces any output, this will be olitpiatre the first field valueBy
default, this output is displayed left-justified on the page.

AT END OF DATA Statement

The AT END OF DATA statement is used to specify processing that is to be performed after all records for a
database processing loop have been processed.

The AT END OF DATA statement must be placed within the processing loop.

If the AT END OF DATA processing produces any output, this will be ouwfteat the last field valueBy
default, this output is displayed left-justified on the page.

Example of AT START OF DATA and AT END OF
DATA Statements

The following example program illustrates the use of the statements AT START OF DATA and AT END OF
DATA. The system variable *TIME has been incorporated into the AT START OF DATA statement to display
the time of day. The system function OLD has been incorporated into the AT END OF DATA statement to
display the name of the last person selected.

** Example Program 'ATSTAX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 CITY
2 NAME
2 JOB-TITLE
2 INCOME (1:1)
3 CURR-CODE
3 SALARY
3 BONUS (1:1)
END-DEFINE
WRITE TITLE 'XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT’ /
READ (3) MYVIEW BY CITY STARTING from 'E’
DISPLAY GIVE SYSTEM FUNCTIONS

Copyright © Software AG 2003 71

Further Examples of AT START OF DATA and AT END OF DATA

NAME (AL=15) JOB-TITLE (AL=15) INCOME (1)
AT START OF DATA
WRITE 'RUN TIME:’ *TIME /
END-START
AT END OF DATA
WRITE / 'LAST PERSON SELECTED:’ OLD (NAME) /
END-ENDDATA
END-READ
AT END OF PAGE
WRITE / 'AVERAGE SALARY:’ AVER (SALARY(1))
END-ENDPAGE
END

The program produces the following output:

AT START/END OF DATA Statements

XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT

NAME CURRENT INCOME
POSITION
CURRENCY ANNUAL BONUS
CODE SALARY

RUN TIME: 11:18:58.2

DUYVERMAN PROGRAMMER USD 34000 0
PRATT SALES PERSON USD 38000 9000
MARKUSH TRAINEE usD 22000 0

LAST PERSON SELECTED: MARKUSH

AVERAGE SALARY: 31333

Further Examples of AT START OF DATA and AT END

OF DATA

See the following example programs in library SYSEXPG:

e ATENDXO01
® ATSTAXO02
e WRITEXO09

72

Copyright © Software AG 2003

Output of Data Output of Data

Output of Data

This document discusses various aspects of how you can control the format of an output report created with
Natural, that is, the way in which the data are displayed.

The following topics are covered:

Layout of an Output Page

Statements DISPLAY and WRITE

Index Notation for Multiple-Value Fields and Periodic Groups
Page Titles and Page Breaks

Column Headers

Parameters to Influence the Output of Fields

Edit Masks - EM Parameter

Vertical Displays

Copyright © Software AG 2003 73

Layout of an Output Page

Layout of an Output Page

Layout of an Output Page

This document gives an overview of the statements that may be used to define a specific layout for a report.

The following topics are covered:

e Statements Influencing a Report Layout
® General Layout Example

Statements Influencing a Report Layout

The following statements have an impact on the layout of the report:

Statement

WRITE
TITLE

WRITE
TRAILER

AT TOP OF
PAGE

AT END OF
PAGE

AT START
OF DATA

AT END OF
DATA

DISPLAY /
WRITE

Function

With this statement, you can specify a page title, that is, text to be output at the top of a page.
By default, page titles are centered and not underlined.

With this statement, you can specify a page trailer, that is, text to be output at the bottom of a
page. By default, the trailer lines are centered and not underlined.

With this statement, you can specify any processing that is to be performed whenever a new
page of the report is started. Any output from this processing will be output below the page
title.

With this statement, you can specify any processing that is to be performed whenever an
end-of-page condition occurs. Any output from this processing will be output below any page
trailer (as specified with th&/RITE TRAILER statement).

With this statement, you specify processing that is to be performed after the first record has
been read in a database processing loop. Any output from this processing will be output before
the first field value.

With this statement, you specify processing that is to be performed after all records for a
processing loop have been processed. Any output from this processing will be output
immediately after the last field value

With these statements, you control the format in which the field values that have been read are
to be output. See secti@tatements DISPLAY and WRITE.

The relevance of the statements AT START OF DATA and AT END OF DATA for the output of data is
described under Database Acc&sB,START/END OF DATA Statementd he other statements listed above
are discussed in other parts of the sedDotput of Data

General Layout Example

The following example program illustrates the general layout of an output page:

** Example Program 'OUTPUXO01’
DEFINE DATA LOCAL
1 EMP-VIEW VIEW OF EMPLOYEES

2 NAME

2 FIRST-NAME

2 BIRTH

END-DEFINE
*

74

Copyright © Software AG 2003

Layout of an Output Page

WRITE TITLE Thkkkkkkkkk Page Tltle *hkkkkkkkkk!
WRITE TRAILER "k Page Trailer rrkicr:
AT TOP OF PAGE
WRITE '===== Top of Page ====='
END-TOPPAGE
AT END OF PAGE
WRITE '===== End of Page =====’
END-ENDPAGE
READ (10) EMP-VIEW BY NAME
DISPLAY NAME FIRST-NAME BIRTH (EM=YYYY-MM-DD)
AT START OF DATA
WRITE '>>>>> Start of Data >>>>>’
END-START
AT END OF DATA
WRITE ’'<<<<< End of Data <<<<<’
END-ENDDATA
END-READ
END

*kkkkkkkkk Page Tltle *kkkkkkkkk

===== Top of Page =====
NAME FIRST-NAME DATE
OF
BIRTH
>>>>> Start of Data >>>>>
ABELLAN KEPA 1961-04-08
ACHIESON ROBERT 1963-12-24
ADAM SIMONE 1952-01-30
ADKINSON JEFF 1951-06-15
ADKINSON PHYLLIS 1956-09-17
ADKINSON HAZEL 1954-03-19
ADKINSON DAVID 1946-10-12
ADKINSON CHARLIE 1950-03-02
ADKINSON MARTHA 1970-01-01
ADKINSON TIMMIE 1970-03-03

<<<<< End of Data <<<<<
*kkkkkkkkk Page Traller *kkkkkkkkk
===== End of Page =—====

Copyright © Software AG 2003

General Layout Example

75

Statements DISPLAY and WRITE Statements DISPLAY and WRITE

Statements DISPLAY and WRITE

This document describes how to use the statent#B88LAY andWRITE to output data and control the format
in which information is output.

The following topics are covered:

DISPLAY Statement

WRITE Statement

Example of DISPLAY Statement

Example of WRITE Statement

Column Spacing - SF Parameter axdNotation

Tab Setting T Notation

Line Advance - / Notation

Example of Line Advance in DISPLAY Statement
Example of Line Advance in WRITE Statement

Further Examples of DISPLAY and WRITE Statements

DISPLAY Statement

TheDISPLAY statement produces output in column format; that is, the values for one field are output in a
column underneath one another. If multiple fields are output, that is, if multiple columns are produced, these
columns are output next to one another horizontally.

The order in which fields are displayed is determined by the sequence in which you specify the field names in
the DISPLAY statement.

The DISPLAY statement in the following program displays for each person first the personnel number, then the
name and then the job title:

** Example Program 'DISPLX01’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID NAME JOB-TITLE

END-READ
END
Page 1 99-01-22 11:31:01
PERSONNEL NAME CURRENT
ID POSITION
30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

76 Copyright © Software AG 2003

Statements DISPLAY and WRITE WRITE Statement

To change the order of the columns that appear in the output report, simply reorder the field names in the
DISPLAY statement. For example, if you prefer to list employee names first, then job titles followed by
personnel numbers, the appropriate DISPLAY statement would be:

** Example Program 'DISPLX02’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
READ (3) VIEWEMP BY BIRTH
DISPLAY NAME JOB-TITLE PERSONNEL-ID

END-READ

END

Page 1 99-01-22 11:32:06
NAME CURRENT PERSONNEL

POSITION ID

GARRET TYPIST 30020013

TAILOR WAREHOUSEMAN 30016112

PIETSCH SECRETARY 20017600

A header is output above each column. Various ways to influence this header are described in the document
Column Headetrs

WRITE Statement

The WRITE statement is used to produce output in free format (that is, not in columns). In contrast to the
DISPLAY statement, the following applies to the WRITE statement:

e [f necessary, it automatically creates a line advance; that is, a field or text element that does not fit onto the
current output line, is automatically output in the next line.
e |t does not produce any headers.

® The values of a multiple-value field are output next to one another horizontally, and not underneath one
another.

The two example programs shown below illustrate the basic differences betwBd8Rh&\Y statement and
the WRITE statement.

You can also use the two statements in combination with one another, as described later in the document Vertical
Displays,Combining DISPLAY and WRITE

Example of DISPLAY Statement

** Example Program 'DISPLX03’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:3)
END-DEFINE

Copyright © Software AG 2003 77

Example of WRITE Statement

READ (2) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY NAME FIRST-NAME SALARY (1:3)
END-READ

Statements DISPLAY and WRITE

END
Page 1 97-08-14 11:44:00
NAME FIRST-NAME ANNUAL
SALARY
JONES VIRGINIA 46000
42300
39300
JONES MARSHA 50000
46000
42700

Example of WRITE Statement

** Example Program '"WRITEX01’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:3)
END-DEFINE
READ (2) VIEWEMP BY NAME STARTING FROM 'JONES’
WRITE NAME FIRST-NAME SALARY (1:3)

END-READ

END

Page 1 97-08-14 11:45:00
JONES VIRGINIA 46000 42300 39300
JONES MARSHA 50000 46000 42700

Column Spacing - SF Parameter andhX Notation

By default, the columns output withlCASPLAY statement are separated from one anothenbkgpace.

With the session paramet®F, you can specify the default number of spaces to be inserted between columns

output with a DISPLAY statement. You can set the number of spaces to any value from 1 to 30.

The parameter can be specified withR@RMAT statement to apply to the whole report, or wibISPLAY

statement at statement level, but not at field level.

With thenX notation in the DISPLAY statement, you can specify the number of spgdedg inserted
between two columns. AmX notation overrides the specification made with $iftgparameter.

78

Copyright © Software AG 2003

Statements DISPLAY and WRITE Tab Setting - nT Notation

** Example Program 'DISPLX04’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
FORMAT SF=3
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID NAME 5X JOB-TITLE
END-READ
END

The above example program produces the following output, where the first two columns are separated by 3
spaces due to th&F parameter in the FORMAT statement, while the second and third columns are separated by
5 spaces due to the notation "5X" in the DISPLAY statement:

Page 1 99-01-22 11:33:40
PERSONNEL NAME CURRENT

ID POSITION
30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

ThenX notation is also available with thNgRITE statement to insert spaces between individual output elements:

WRITE PERSONNEL-ID 5X NAME 3X JOB-TITLE

With the above statement, 5 spaces will be inserted between the fields PERSONNEL-ID and NAME, and 3
spaces between NAME and JOB-TITLE.

Tab Setting -nT Notation

With thenT notation, which is available with tidSPLAY and theRITE statement, you can specify the
position where an output element is to be output.

** Example Program 'DISPLX05’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME

END-DEFINE

READ (3) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY 5T NAME 30T FIRST-NAME

END-READ

END

The above program produces the following output, where the field NAME is output starting in the 5th position
(counted from the left margin of the page), and the field FIRST-NAME starting in the 30th position:

Copyright © Software AG 2003 79

Line Advance - Slash Notation

Statements DISPLAY and WRITE

Page 1 97-08-21 11:46:01
NAME FIRST-NAME
JONES VIRGINIA
JONES MARSHA
JONES ROBERT

Line Advance - Slash Notation

With a slash "/" in DISPLAY or WRITE statement, you cause a line advance.

® [n a DISPLAY statement, a slash causes a line adveeteeeen fieldandwithin text

e In a WRITE statement, a slash causes a line advance only when lphween fieldswithin text, it is
treated like an ordinary text character.

When placed between fields, the slash must have a blank on either side.

For multiple line advances, you specify multiple slashes.

Example of Line Advance in DISPLAY Statement

** Example Program 'DISPLX06’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME

2 DEPARTMENT

END-DEFINE

READ (3) VIEWEMP BY NAME STARTING FROM "JONES’

DISPLAY NAME / FIRST-NAME 'DEPART-/MENT' DEPARTMENT

END-READ
END

The above DISPLAY statement produces a line advance after each value of the field NAME and within the text
"DEPART-MENT":

Page 1 97-08-14 11:45:12
NAME DEPART-

FIRST-NAME MENT

JONES SALE

VIRGINIA

JONES MGMT

MARSHA

JONES TECH

ROBERT

80

Copyright © Software AG 2003

Statements DISPLAY and WRITE Example of Line Advance in WRITE Statement

Example of Line Advance in WRITE Statement

** Example Program 'WRITEX02’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 DEPARTMENT
END-DEFINE
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES’
WRITE NAME / FIRST-NAME 'DEPART-/MENT’' DEPARTMENT //
END-READ
END

The above WRITE statement produces a line advance after each value of the field NAME, and a double line
advance after each value of the field DEPARTMENT, but none within the text "DEPART-/MENT":

Page 1 97-08-14 11:45:12

JONES
VIRGINIA DEPART-/MENT SALE

JONES
MARSHA DEPART-/MENT MGMT

JONES
ROBERT DEPART-/MENT TECH

Further Examples of DISPLAY and WRITE Statements

See the following example programs in library SYSEXPG:

DISPLX13
WRITEXO08
DISPLX14
WRITEXO09
DISPLX21

Copyright © Software AG 2003 81

Index Notation for Multiple-Value Fields and Periodic Groups Index Notation for Multiple-Value Fields and Periodic Groups

Index Notation for Multiple-Value Fields
and Periodic Groups

This document describes how you can use the index nofatiorto specify how many values of a
multiple-value field or how many occurrences of a periodic group are to be output.

The following topics are covered:

e Use of Index Notation
® Example of Index Notation in DISPLAY Statement
e Example of Index Notation in WRITE Statement

Use of Index Notation

With the index notatiofin:n) you can specify how many values of a multiple-value field or how many
occurrences of a periodic group are to be output.

For example, the field INCOME in the DDM EMPLOYEES is a periodic group which keeps a record of the
annual incomes of an employee for each year he/she has been with the company.

These annual incomes are maintained in chronological order. The income of the most recent year is in
occurrence "1".

If you wanted to have the annual incomes of an employee for the last three years displayed - that is, occurrences
"1" to "3" - you would specify the notation "(1:3)" after the field nameMMSPLAY or WRITE statement (as
shown in the following example program).

Example of Index Notation in DISPLAY Statement

** Example Program 'DISPLXO07’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 INCOME (1:3)
3 CURR-CODE
3 SALARY
3 BONUS (1:1)
END-DEFINE
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID NAME INCOME (1:3)
SKIP 1
END-READ
END

Note that &DISPLAY statement outputs multiple values of a multiple-value field underneath one another:

82 Copyright © Software AG 2003

Index Notation for Multiple-Value Fields and Periodic Groups Example of Index Notation in WRITE Statement

Page 1 99-01-22 11:36:58
PERSONNEL NAME INCOME
ID

CURRENCY ANNUAL BONUS
CODE SALARY

30020013 GARRET UKL 4200 0
UKL 4150 0
0 0
30016112 TAILOR UKL 7450 0
UKL 7350 0
UKL 6700 0
20017600 PIETSCH uUsbD 22000 0
uUsbD 20200 0
uUsD 18700 0

As aWRITE statement displays multiple values horizontally instead of vertically, this may cause a line overflow
and a - possibly undesired - line advance.

If you use only a single field within a periodic group (for example, SALARY) instead of the entire periodic
group, and if you also insert a slash "/" to cause a line advance (as shown in the following example between
NAME and JOB-TITLE), the report format becomes manageable.

Example of Index Notation in WRITE Statement

** Example Program 'WRITEXO03'
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
2 SALARY (1:3)
END-DEFINE
READ (3) VIEWEMP BY BIRTH
WRITE PERSONNEL-ID NAME / JOB-TITLE SALARY (1:3)
SKIP 1
END-READ
END

Page 1 99-01-22 11:37:18

30020013 GARRET
TYPIST 4200 4150 0

30016112 TAILOR
WAREHOUSEMAN 7450 7350 6700

20017600 PIETSCH
SECRETARY 22000 20200 18700

Copyright © Software AG 2003 83

Page Titles and Page Breaks Page Titles and Page Breaks

Page Titles and Page Breaks

This document describes various ways of controlling page breaks in a report and the output of page titles at the
top of each report page.

The following topics are covered:

Default Page Title

Suppress Page Title - NOTITLE Option

Define Your Own Page Title - WRITE TITLE Statement
Logical Page and Physical Page

Page Size - PS Parameter

Page Advance - EJ Parameter

Page Advance - EJECT and NEWPAGE Statements
Page Trailer - WRITE TRAILER Statement

AT TOP OF PAGE Statement

AT END OF PAGE Statement

Further Examples

Default Page Title

For each page output vieDASPLAY or WRITE statement, Natural automatically generates a single default title
line. This title line contains the page number, the date and the time of day.

WRITE 'HELLO’
END

The above program produces the following output with default page title:

Page 1 97-08-14 18:27:35

HELLO

Suppress Page Title - NOTITLE Option

If you wish your report to be output without page titles, you add the keyM@AdTLE to theDISPLAY or
WRITE statement.

WRITE NOTITLE "HELLO’
END

The above program produces the following output without page title:

HELLO

84 Copyright © Software AG 2003

Page Titles and Page Breaks Define Your Own Page Title - WRITE TITLE Statement

Define Your Own Page Title - WRITE TITLE Statement

If you wish a page title of your own to be output instead of the Natural default page title, you use the statement
WRITE TITLE.

The following topics are covered below:

® Specifying Text for Your Title
® Specifying Empty Lines after the Title
e Title Justification and/or Underlining

Specifying Text for Your Title
With the statementVRITE TITLE, you specify the text for your title (in apostrophes).
WRITE TITLE 'THIS IS MY PAGE TITLE’

WRITE 'HELLO’
END

THIS IS MY PAGE TITLE

HELLO

Specifying Empty Lines after the Title

With the SKIP option of theVRITE TITLE statement, you can specify the number of empty lines to be output
immediately below the title line. After the keyword SKIP, you specify the number of empty lines to be inserted.

WRITE TITLE 'THIS IS MY PAGE TITLE’ SKIP 2
WRITE "HELLO’
END

THIS IS MY PAGE TITLE

HELLO

SKIP is not only available as part of "WRITE TITLE statement, but also astand-alone statement

Title Justification and/or Underlining
By default, the page title is centered on the page and not underlined.

TheWRITE TITLE statement provides the following options which can be used independent of each other:

Copyright © Software AG 2003 85

Logical Page and Physical Page Page Titles and Page Breaks

Option Effect
LEFT . . I
JUSTIFIED Causes the title to be displayed left-justified.

Causes the title to be displayed underlined. The underlining runs the width of the ling size
(see also Natural profile and session parameigr

UNDERLINED By default, titles are underlined with a hyphen (-). However, withtUiesession

parameter you can specify another character to be used as underlining character (s¢e
Underlining Character for Titles and Headers

The following example shows the effect of tteFT JUSTIFIED and UNDERLINE®ptions:

WRITE TITLE LEFT JUSTIFIED UNDERLINED 'THIS IS MY PAGE TITLE’ SKIP 2
WRITE 'HELLO’
END

THIS IS MY PAGE TITLE

HELLO

TheWRITE TITLE statement is executed whenever a new page is initiated for the report.

Logical Page and Physical Page

A logical pageis the output produced by a Natural program.

A physical pages your terminal screen on which the output is displayed; or it may be the piece of paper on
which the output is printed.

The size of the logical page is determined by the number of lines output by the Natural program.

If more lines are output than fit onto one screen, the logical page will exceed the physical screen, and the
remaining lines will be displayed on the next screen.

86 Copyright © Software AG 2003

Page Titles and Page Breaks Page Size - PS Parameter

Fhysical Page (Screen)

If information you wish to appear at the bottom of the screen (for example, output creattRbEa
TRAILER or AT END OF PAGEstatement) is output on the next screen instead, reduce the logical page size
accordingly (with the session parame®& which is discussed below).

Page Size - PS Parameter
With the parametePS you determine the maximum number of lines per (logical) page for a report.

When the number of lines specified with the PS parameter is reached, a page advance occurs (unless page
advance is controlled withMEWPAGE or EJECTstatement; seBage Advance Controlled by EJ Parameter
below).

Copyright © Software AG 2003 87

Page Advance Page Titles and Page Breaks

The PS parameter can be set either at session level with the system cdBi@8Al_S, or within a program
with the following statements:

e at report level:

O FORMAT PS#n
® at statement level:
DISPLAY (PS= nn)
WRITE (PS= nn)
WRITE TITLE (PS= nn)
WRITE TRAILER (PS= nn)
INPUT (PS= nn)

O O O O O

Page Advance

A page advance can be triggered by one of the following methods:

® Page Advance Controlled by EJ Parameter
® Page Advance Controlled by EJECT or NEWPAGE Statements
® Eject/New Page when less thahine Left

These methods are discussed below.

Page Advance Controlled by EJ Parameter

With the session parametgd, you determine whether page ejects are to be performed or not. By default,
EJ=ON applies, which means that page ejects will be performed as specified.

If you specify EJ=0OFF, page break information will be ignored. This may be useful to save paper during test
runs where page ejects are not needed.

The EJ parameter can be set at session level with the system co@b@BALS; for example:
GLOBALS EJ=OFF

TheEJ parameter setting is overriden by th#ECTstatement.

Page Advance Controlled by EJECT or NEWPAGE Statements

Page Advance without Title/Header on Next Page

The EJECTstatement causes a page advavitgouta title or header line being generated on the next page. A
new physical page is startedthoutany top-of-page or end-of-page processing being performed (for example,
noWRITE TRAILER or AT END OF PAGEWRITE TITLE, AT TOP OF PAGEor *PAGE-NUMBER
processing).

The EJECTstatement overrides tli&] parameter setting.

Page Advance with End/Top-of-Page Processing

The NEWPAGE statement causes a page advavitieassociated end-of-page and top-of-page processing. A
trailer line will be displayed, if specified. A title line, either default or user-specified, will be displayed on the
new page (unless tidOTITLE option has been specified ilDdSPLAY or WRITE statement).

If the NEWPAGE statement is not used, page advance is automatically controlled by the setting®f the
parameter; seRage Size - PS Paramesdiove).

88 Copyright © Software AG 2003

Page Titles and Page Breaks New Page with Title

Eject/New Page when less than Line Left

Both theNEWPAGE statement and tHeJECTstatement provide WHEN LESS THANNLINES LEFT option.
With this option, you specify a number of linesThe NEWPAGE/EJECT statement will then be executed if - at
the time the statement is processed - lessaHares are available on the current page.

Example:
FORMAT PS=55

NEWPAGE WHEN LESS THAN 7 LINES LEFT

In this example, the page size is set to 55 lines.

If only 6 or less lines are left on the current page at the time wh&NBEWEP AGE statement is processed, the
NEWPAGE statement is executed and a page advance occurs.

If 7 or more lines are left, the NEWPAGE statement is not executed and no page advance occurs; the page
advance then occurs depending onRBgarameter, that is, after 55 lines.

New Page with Title

The NEWPAGEstatement also providesMTH TITLE option. If this option is not used, a default title will
appear at the top of the new page WRITE TITLE statement oNOTITLE clause will be executed.

TheWITH TITLE option of the NEWPAGE statement allows you to override these with a title of your own
choice. The syntax of the WITH TITLE option is the same as fo'MRETE TITLE statement.

Example:
NEWPAGE WITH TITLE LEFT JUSTIFIED 'PEOPLE LIVING IN BOSTON:’

The following program illustrates the use of #@parameter and tHéEWPAGE statement. Moreover, the
system variablsPAGE-NUMBER is used to display the current page number.

** Example Program '"NEWPAX01’

DEFINE DATA LOCAL

1 VIEWEMP OF EMPLOYEES
2 NAME
2CITY
2 DEPT

END-DEFINE

FORMAT PS=20

READ (5) VIEWEMP BY CITY STARTING FROM 'M’
DISPLAY NAME 'DEPT DEPT 'LOCATION’ CITY
AT BREAK OF CITY

NEWPAGE WITH TITLE LEFT JUSTIFIED
'EMPLOYEES BY CITY - PAGE:" *PAGE-NUMBER

END-BREAK

END-READ

END

Note the position of the page breaks and the title line printed on the new page:

Copyright © Software AG 2003 89

Page Trailer - WRITE TRAILER Statement Page Titles and Page Breaks

Page 1 97-08-19 18:27:35

NAME DEPT LOCATION

FICKEN TECH10 MADISON
KELLOGG TECH10 MADISON
ALEXANDER SALE20 MADISON

EMPLOYEES BY CITY - PAGE: 2
NAME DEPT LOCATION

DE JUAN SALEO3 MADRID
DE LA MADRID PRODO1 MADRID

Page Trailer - WRITE TRAILER Statement

® Specifying a Page Trailer
e Considering Logical Page Size
® Page Trailer Justification and/or Underlining

Specifying a Page Trailer
The WRITE TRAILER statement is used to output text (in apostrophes) at the bottom of a page.
WRITE TRAILER 'THIS IS THE END OF THE PAGFE’

The statement is executed when an end-of-page condition is detected, or as a r&UPar NEWPAGE
statement.

Considering Logical Page Size

As the end-of-page condition is checked aafter an entireDISPLAY or WRITE statement has been processed,
it may occur that the logical page size (that is, the number of lines outpl@IBPEAY or WRITE statement)
causes the physical size of the output page to be exceeded beitelFEe TRAILER statement is executed.

To ensure that a page trailer actually appears at the bottom of a physical page, you should set the logical page
size (with thePSsession parameter) to a value less than the physical page size.

Page Trailer Justification and/or Underlining
By default, the page trailer is displayed centered on the page and not underlined.

The WRITE TRAILER statement provides the following options which can be used independent of each other:

920 Copyright © Software AG 2003

Page Titles and Page Breaks AT TOP OF PAGE Statement

Option Effect
LEFT Causes the page trailer to be displayed left-justified
JUSTIFIED pag play J :

Causes the page trailer to be displayed underlined. The underlining runs the width of the
line size (see also Natural profile and session param8jer

UNDERLINED By default, titles are underlined with a hyphen (-). However, wittUiesession

parameter you can specify another character to be used as underlining character (see
Underlining Character for Titles and Headers

The following example shows the use of t&=T JUSTIFIED and UNDERLINEptions of theVRITE
TRAILER statement:

WRITE TRAILER LEFT JUSTIFIED UNDERLINED 'THIS IS THE END OF THE PAGFE’

AT TOP OF PAGE Statement

The AT TOP OF PAGEstatement is used to specify any processing that is to be performed whenever a new page
of the report is started.

If the AT TOP OF PAGE processing produces any output, this will be output below the page title (with a
skipped line in between).

By default, this output is displayed left-justified on the page.

AT END OF PAGE Statement

The AT END OF PAGEstatement is used to specify any processing that is to be performed whenever an
end-of-page condition occurs.

If the AT END OF PAGE processing produces any output, this will be output aftpageytraile(as specified
with theWRITE TRAILER statement).

By default, this output is displayed left-justified on the page.

The same consideratiodsscribed abovtor page trailers regarding physical and logical page sizes and the
number of lines output byRISPLAY or WRITE statement also apply 8T END OF PAGEoutput.

Further Examples

Examples of WRITE TITLE, WRITE TRAILER, AT TOP OF PAGE, AT
END OF PAGE and SKIP Statements

See the following example programs in library SYSEXPG:

WTITLX01
DISPLX21
ATENPX01
ATTOPXO01
SKIPXO01
SKIPX02

Copyright © Software AG 2003 91

Example of NOTITLE Option

Example of NOTITLE Option

See the following example program in library SYSEXPG:
e DISPLX20

Example of NEWPAGE and EJECT Statements

See the following example program in library SYSEXPG:

e NEWPAXO02

92

Page Titles and Page Breaks

Copyright © Software AG 2003

Column Headers Column Headers

Column Headers

This document describes various ways of controlling the display of column headers producd&BlARY
statement.

Default Column Headers

Suppress Default Column Headers - NOHDR Option

Define Your Own Column Headers

Combining NOTITLE and NOHDR

Centering of Columm Headers - HC Parameter

Width of Columm Headers - HW Parameter

Filler Characters for Headers - Parameters FC and GC
Underlining Character for Titles and Headers - UC Parameter
Suppressing Columm Headers - Slash Notation

Further Examples of Column Headers

Default Column Headers

By default, each database field output withI8PLAY statement is displayed with a default column header
(which is defined for the field in the DDM).

** Example Program 'DISPLX01’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID NAME JOB-TITLE
END-READ
END

The above example program uses default headers and produces the following output:

Page 1 99-01-22 11:31:01
PERSONNEL NAME CURRENT
ID POSITION
30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

Suppress Default Column Headers - NOHDR Option

If you wish your report to be output without column headers, add the keyN@HDR to theDISPLAY
statement.

Copyright © Software AG 2003 93

Define Your Own Column Headers Column Headers

DISPLAY NOHDR PERSONNEL-ID NAME JOB-TITLE

Define Your Own Column Headers

If you wish column headers of your own to be output instead of the default headers, you tpddify '
apostrophes) immediately before a figkktbeing the header to be used for the field.

** Example Program 'DISPLX08’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID
'EMPLOYEE’ NAME
'POSITION’ JOB-TITLE
END-READ
END

The above program contains the header "EMPLOYEE" for the field NAME, and the header "POSITION" for the
field JOB-TITLE; for the field PERSONNEL-ID, the default header is used. The program produces the
following output:

Page 1 99-01-22 11:39:53
PERSONNEL EMPLOYEE POSITION
ID
30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

Combining NOTITLE and NOHDR

To create a report that has neither page title nor column headers, you spdd@®Tifi¢ E andNOHDR options
together in the following order:

DISPLAY NOTITLE NOHDR PERSONNEL-ID NAME JOB-TITLE

Centering of Column Headers - HC Parameter

By default, column headers are centered above the columns. WHICtharameter, you can influence the
placement of column headers.

If you specify

94 Copyright © Software AG 2003

Column Headers Width of Column Headers - HW Parameter

HC=L headers will be left-justified.
HC=R headers will be right-justified.

HC=C headers will be centered.

The HC parameter can be used FQRMAT statement to apply to the whole report, or it can be used in a
DISPLAY statement at both statement level and field level.

DISPLAY (HC=L) PERSONNEL-ID NAME JOB-TITLE

Width of Column Headers - HW Parameter

With theHW parameter, you determine the width of a column output WilIS®LAY statement.

If you specify

HW=ON the width of a DISPLAY column is determined by either the length of the header text or the

- length of the field, whichever is longer. This also applies by default.

the width of a DISPLAY column is determined only by the length of the field. However,

HW=0FF HW=0FF only applies to DISPLAY statements whichrad create headers; that is, either a first
DISPLAY statement wittNOHDR option or a subsequent DISPLAY statement.

The HW parameter can be used IR@RMAT statement to apply to the entire report, or it can be used in a
DISPLAY statement at both statement level and field level.

Filler Characters for Headers - Parameters FC and GC

With the FC parameter, you specify tifidler characterwhich will appear on either side ohaaderproduced by
aDISPLAY statement across the full column width if the column width is determined by the field length and not
by the header (s¢¢W parameteabovg; otherwise FC will be ignored.

When a group of fields or a periodic group is output VIASPLAY statement, group headeis displayed

across all field columns that belong to that group above the headers for the individual fields within the group.
With the GC parameter, you can specify tlilker characterwhich will appear on either side of such a group
header.

While theFC parameter applies to the headers of individual fieldsGth@arameter applies to the headers for
groups of fields.

The parameters FC and GC can be specifiedd@RMAT statement to apply to the whole report, or they can be
specified in DISPLAY statement at both statement level and field level.

** Example Program 'FORMAXO01’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 INCOME (1:1)
3 CURR-CODE
3 SALARY
3 BONUS (1:1)
END-DEFINE
FORMAT FC=* GC=$%

Copyright © Software AG 2003 95

Underlining Character for Titles and Headers - UC Parameter Column Headers

READ (3) VIEWEMP BY NAME
DISPLAY NAME (FC==) INCOME (1)

END-READ

END

The above program produces the following output:

Page 1 97-08-19 17:37:27

NAME $$5$355$$SSSINCOMESS$$SS$$555S$

CURRENCY **ANNUAL** *BONUS***
CODE SALARY

ABELLAN PTA 1450000 0
ACHIESON UKL 10500 0
ADAM FRA 159980 23000

Underlining Character for Titles and Headers - UC
Parameter

By default, titles and headers are underlined with a hyphen (-).

With theUC parameter, you can specify another character to be used as underlining character.

The UC parameter can be specified F@GRMAT statement to apply to the whole report, or it can be specified
in aDISPLAY statement at both statement level and field level.

** Example Program 'FORMAX02’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
FORMAT UC==
WRITE TITLE LEFT JUSTIFIED UNDERLINED 'EMPLOYEES REPORT’ SKIP 1
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID (UC=*) NAME JOB-TITLE
END-READ
END

In the above program, théC parameter is specified at program level and at field level: the underlining character

specified with thd=FORMAT statement (=) applies for the whole report - except for the field PERSONNEL-ID,
for which a different underlining character (*) is specified. The program produces the following output:

96 Copyright © Software AG 2003

Column Headers

Suppressing Column Headers - Slash Notation

EMPLOYEES REPORT

PERSONNEL NAME CURRENT
ID POSITION

*kkkkkkkk

30020013 GARRET TYPIST

30016112 TAILOR WAREHOUSEMAN

20017600 PIETSCH SECRETARY

Suppressing Column Headers - Slash Notation

With the notation apostrophe-slash-apostrophe (/’), you can suppress default column headers for individual

fields displayed with ®ISPLAY statement. While thOHDR option suppresses the headers of all columns,
the notation '/’ can be used to suppress the header for an individual column.

The apostrophe-slash-apostrophe (/) notation is specified in the DISPLAY statement immediately before the

name of the field for which the column header is to be suppressed.

Compare the following two examples:

Example 1:

DISPLAY NAME PERSONNEL-ID JOB-TITLE

In this case, the default column headers of all three fields will be displayed:

Page 1 97-04-19 17:37:27
NAME PERSONNEL CURRENT
1D POSITION
ABELLAN 60008339 MAQUINISTA
ACHIESON 30000231 DATA BASE ADMINISTRATOR
ADAM 50005800 CHEF DE SERVICE
ADKINSON 20008800 PROGRAMMER
ADKINSON 20009800 DBA
ADKINSON 20011000 SALES PERSON
Example 2:

DISPLAY '/ NAME PERSONNEL-ID JOB-TITLE

In this case, the notation '/’ causes the column header for the field NAME to be suppressed:

Copyright © Software AG 2003

97

Further Examples of Column Headers Column Headers

Page 1 97-04-19 17:38:45
PERSONNEL CURRENT
ID POSITION
ABELLAN 60008339 MAQUINISTA
ACHIESON 30000231 DATA BASE ADMINISTRATOR
ADAM 50005800 CHEF DE SERVICE
ADKINSON 20008800 PROGRAMMER
ADKINSON 20009800 DBA
ADKINSON 20011000 SALES PERSON

Further Examples of Column Headers

See the following example programs in library SYSEXPG:

® DISPLX15
® DISPLX16

98 Copyright © Software AG 2003

Parameters to Influence the Output of Fields Parameters to Influence the Output of Fields

Parameters to Influence the Output of
Fields

This document discusses the use of those Natural profile and/or session parameters which you can use to control
the output format of fields.

The following topics are covered:

Overview of Field-Output-Relevant Parameters
Leading Characters - LC Parameter

Insertion Characters - IC Parameter

Trailing Characters - TC Parameter

Output Length - AL and NL Parameters

Sign Position - SG Parameter

Identical Suppress - IS Parameter

Zero Printing - ZP Parameter

Empty Line Suppression - ES Parameter

Further Examples of Field-Output-Relevant Parameters

Overview of Field-Output-Relevant Parameters

Natural provides several profile and/or session parameters you can use to control the format in which fields are
output:

Parameter Function

LC,ICand With these session parameters, you can specify characters that are to be displayed before or
TC after a field or before a field value.

AL andNL With these session parameters, you can increase or reduce the output length of fields.

SG With this session parameter, you can determine whether negative values are to be displayed
with or without a minus sign.

IS With this session parameter, you can suppress the display of subsequent identical field values.

ZP With this profile and session parameter, you can determine whether field values of "0" are to be

displayed or not.

ES With this session parameter, you can suppress the display of empty lines generated by a
DISPLAY or WRITE statement.

These parameters are discussed below.

Leading Characters - LC Parameter

With the session paramete€, you can specify leading characters that are to be displayed immeb&ftaly a
field that is output with ®ISPLAY statement. The width of the output column is enlarged accordingly. You can
specify 1 to 10 characters.

Copyright © Software AG 2003 99

Insertion Characters - IC Parameter Parameters to Influence the Output of Fields

By default, values are displayed left-justified in alphanumeric fields and right-justified in numeric fields. (These
defaults can be changed with the AD parameter; seeafaneter Referenc®mcumentation). When a leading
character is specified for an alphanumeric field, the character is therefore displayed immediately before the field
value; for a numeric field, a number of spaces may occur between the leading character and the field value.

TheLC parameter can be used with the following statements:

o FORMAT
e DISPLAY

It can be set at statement level and at field level.

Insertion Characters - IC Parameter

With the session paramet€, you specify the characters to be inserted in the column immediagéelgding the
value of a fieldhat is output with ®ISPLAY statement. You can specify 1 to 10 characters.

For a numeric field, the insertion characters will be placed immediately before the first significant digit that is
output, with no intervening spaces between the specified character and the field value. For alphanumeric fields,
the effect of the IC parameter is the same as that afGhgarameter.

The parametersC andIC cannot both be applied to one field.
ThelC parameter can be used with the following statements:

e FORMAT
® DISPLAY

It can be set at statement level and at field level.

Trailing Characters - TC Parameter

With the session paramef€€, you can specify trailing characters that are to be displayed immedaathly
right of a fieldthat is output with &ISPLAY statement. The width of the output column is enlarged
accordingly. You can specify 1 to 10 characters.

TheTC parameter can be used with the following statements:

o FORMAT
® DISPLAY

It can be set at statement level and at field level.

Output Length - AL and NL Parameters

With the session paramet&L., you can specify theutput lengthfor an alphanumeric field; with tHeL
parameter, you can specify thetput lengtifor a numeric field. This determines the length of a field as it will
be output, which may be shorter or longer than the actual length of the field (as defined in the DDM for a
database field, or in tHeEFINE DATA statement for a user-defined variable).

Both parameters can be used with the following statements:

o FORMAT
e DISPLAY
e WRITE

100 Copyright © Software AG 2003

Parameters to Influence the Output of Fields Sign Position - SG Parameter

e INPUT
They can be set at statement level and at field level.

Note:
If an edit mask is specified, it overridesh or AL specificationEdit masksare described i&dit Masks - EM
Parameter

Sign Position - SG Parameter

With the session paramet®6, you can determine whether or not a sign position is to be allocated for numeric
fields.

® By default, SG=ON applies, which means that a sign position is allocated for numeric fields.
e If you specify SG=OFF, negative values in numeric fields will be output without a minus sign (-).

The SG parameter can be used with the following statements:

FORMAT
DISPLAY
WRITE
INPUT

It can be set at both statement level and field level.

Note:
If an edit mask is specified, it overrides @@ specification Edit masksare described ikdit Masks - EM
Parameter

Example Program without Parameters

** Example Program 'FORMAX03’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 BONUS (1:1,1:1)
END-DEFINE
READ (5) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY NAME FIRST-NAME
SALARY (1:1) BONUS (1:1,1:1)
END-READ
END

The above program contains no parameter settings and produces the following output:

Page 1 97-08-15 17:25:19

NAME FIRST-NAME ANNUAL BONUS
SALARY

JONES VIRGINIA 46000 9000

JONES MARSHA 50000 0

JONES ROBERT 31000 0

JONES LILLY 24000 0

JONES EDWARD 37600 0

Copyright © Software AG 2003 101

Identical Suppress - IS Parameter Parameters to Influence the Output of Fields

Example Program with Parameters AL, NL, LC, ICand TC

In this example, the session paramegdrsNL, LC, IC andTC are used.

** Example Program 'FORMAXO04’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 BONUS (1:1,1:1)
END-DEFINE
FORMAT AL=10 NL=6
READ (5) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY NAME (LC=*) FIRST-NAME (TC=*)
SALARY (1:1)(IC=$) BONUS (1:1,1:1)(LC=>)
END-READ
END

The above program produces the following output. Compare the layout of this output with that of the previous
program to see the effect of the individual parameters:

Page 1 97-08-19 17:26:12

NAME FIRST-NAME ANNUAL BONUS
SALARY

*JONES VIRGINIA * $46000 > 9000
*JONES MARSHA * $50000> O
*JONES ROBERT * $31000> O
*JONES LILLY * $24000> O
*JONES EDWARD * $37600> O

As you can see in the above example, any output length you specify with theNL parameter does not
include any characters specified with tt@, IC andTC parameters: the width of the NAME column, for
example, is 11 characters - 10 for the field value (AL=10) plus 1 leading character.

The width of the SALARY and BONUS columns is 8 characters - 6 for the field Vdlues], plus 1
leading/inserted character, plus 1 sign position (becaGs©N applies).

ldentical Suppress - IS Parameter

With the session paramet&; you can suppress the display of identical information in successive lines created
by aWRITE or DISPLAY statement.

e By default, IS=OFF applies, which means that identical field values will be displayed.
e If IS=ON is specified, a value which is identical to the previous value of that field will not be displayed.

The IS parameter can be specified

e with aFORMAT statement to apply to the whole report, or
® in aDISPLAY or WRITE statement at both statement level and field level.

The effect of the parameter IS=ON can be suspended for one record by using the sB#SREND
IDENTICAL SUPPRESSsee the Natural Statements documentation for details.

102 Copyright © Software AG 2003

Parameters to Influence the Output of Fields Zero Printing - ZP Parameter

Compare the output of the following two example programs to see the effect of the IS parameter. In the second
one, the display of identical values in the NAME field is suppressed.

Example Program without IS Parameter

** Example Program 'FORMAXO05’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME

END-DEFINE

READ (3) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY NAME FIRST-NAME

END-READ

END

Page 1 97-08-18 17:25:19
NAME FIRST-NAME

JONES VIRGINIA

JONES MARSHA

JONES ROBERT

Example Program with IS Parameter

** Example Program 'FORMAXO06’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME

END-DEFINE

FORMAT IS=ON

READ (3) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY NAME FIRST-NAME

END-READ

END

Page 1 97-08-18 17:26:02

NAME FIRST-NAME

JONES VIRGINIA
MARSHA
ROBERT

Zero Printing - ZP Parameter

With the profile and session parameZ@; you determine how a field value of zero is to be displayed.

® By default, ZP=ON applies, which means that one "0" (for numeric fields) or all zeros (for time fields) will
be displayed for each field value that is zero.

e If you specify ZP=OFF, the display of each field value which is zero will be suppressed.

Copyright © Software AG 2003 103

Empty Line Suppression - ES Parameter Parameters to Influence the Output of Fields

The ZP parameter can be specified

e with aFORMAT statement to apply to the whole report, or
® in aDISPLAY or WRITE statement at both statement level and field level.

Compare the output of the following tvesample programt® see the effect of the parameters ZP and ES.

Empty Line Suppression - ES Parameter

With the session parametes, you can suppress the output of empty lines createdd$RLAY or WRITE
statement.

e By default, ES=OFF applies, which means that lines containing all blank values will be displayed.

e |f ES=ON is specified, a line resulting fronDdSPLAY or WRITE statement which contains all blank
values will not be displayed. This is particularly useful when displaying multiple-value fields or fields
which are part of a periodic group if a large number of empty lines are likely to be produced.

The ES parameter can be specified

e with aFORMAT statement to apply to the whole report, or
® in aDISPLAY or WRITE statement at statement level.

Note:
To achieve empty suppression for numeric values, in addition to ES=ON the parameter ZP=OFF must also be set
for the fields concerned in order to have null values turned into blanks and thus not output either.

Compare the output of the following two example programs to see the effect of the parameters ZP and ES.

Example Program without Parameters ZP and ES

** Example Program 'FORMAXO07’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 BONUS (1:2,1:1)
END-DEFINE
READ (4) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY NAME FIRST-NAME BONUS (1:2,1:1)

END-READ
END
Page 1 97-08-18 17:26:19
NAME FIRST-NAME BONUS
JONES VIRGINIA 9000
6750
JONES MARSHA 0
0
JONES ROBERT 0
0
JONES LILLY 0
0

104 Copyright © Software AG 2003

Parameters to Influence the Output of Fields Further Examples of Field-Output-Relevant Parameters

Example Program with Parameters ZP and ES

** Example Program 'FORMAXO08'’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 BONUS (1:2,1:1)
END-DEFINE
FORMAT ES=ON
READ (4) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY NAME FIRST-NAME BONUS (1:2,1:1)(ZP=0OFF)

END-READ
END
Page 1 97-08-18 17:27:12
NAME FIRST-NAME BONUS
JONES VIRGINIA 9000
6750
JONES MARSHA
JONES ROBERT
JONES LILLY

Further Examples of Field-Output-Relevant Parameters

For further examples of the paramete®s IC, TC, AL, NL, IS, ZP andES, and theSUSPEND IDENTICAL

SUPPRESStatement, see the following example programs in library SYSEXPG:

DISPLX17
DISPLX18
DISPLX19
SUSPEXO01
SUSPEX02
COMPRXO03.

Copyright © Software AG 2003

105

Edit Masks - EM Parameter Edit Masks - EM Parameter

Edit Masks - EM Parameter

This document describes how you can specify an edit mask for an alphanumeric or numeric field.
The following topics are covered below:

Use of EM Parameter

Edit Masks for Numeric Fields

Edit Masks for Alphanumeric Fields
Length of Fields

Edit Masks for Date and Time Fields
Examples of Edit Masks

Further Examples of Edit Masks

Use of EM Parameter

With the session parameteM you can specify an edit mask for an alphanumeric or numeric field, that is,
determine character by character the format in which the field values are to be output.

Example:
DISPLAY NAME (EM=XAXAXAXAXAXAXAXNXAX)

In this example, each "X" represents one character of an alphanumeric field value to be displayed, and each ""
represents a blank. If displayed via DESPLAY statement, the name "JOHNSON" would appear as follows:

JOHNSON
You can specify the session paramé&kt

e atreport level (in a FORMAT statement),
e at statement level (inRISPLAY, WRITE, INPUT, MOVE EDITED or PRINT statement) or
e at field level (in a DISPLAYWRITE or INPUT statement).

An edit mask specified with the session parameter EM will override a default edit mask specified for a field in
the DDM.

If EM=OFF is specified, no edit mask at all will be used.
An edit mask specified at statement level will override an edit mask specified at report level.

An edit mask specified at field level will override an edit mask specified at statement level.

Edit Masks for Numeric Fields

Edit masks for numeric fields (formats N, I, P, F) must include a "9" for each output position you want filled
with a number (even if it is zero).

® A"Z"is used to indicate that the output position will be filled only if the available number is not zero.

® A decimal point is indicated with a period ".

To the right of the decimal point, a "Z" must not be specified. Leading, trailing, and insertion characters - for
example, sign indicators - can be added.

106 Copyright © Software AG 2003

Edit Masks - EM Parameter Edit Masks for Alphanumeric Fields

Edit Masks for Alphanumeric Fields

Edit masks for alphanumeric fields must include an "X" for each alphanumeric character that is to be output.

With a few exceptions, you may add leading, trailing and insertion characters (with or without enclosing them in
apostrophes).

The character " is used to insert blanks in edit mask for both numeric and alphanumeric fields.

Length of Fields

It is important to be aware of the length of the field to which you assign an edit mask.

e If the edit mask is longer than the field, this will yield unexpected results.
e If the edit mask is shorter than the field, the field output will be truncated to just those positions specified in
the edit mask.

Examples:

Assuming an alphanumeric field that is 12 characters long and the field value to be output is "JOHNSON", the
following edit masks will yield the following results:

EM=X.X.X.X.X Output: J.O.H.N.S

EM="XOKX™ Output: ***JOHNSO**

Edit Masks for Date and Time Fields

Edit masks for date fields can include the characters "D" (day), "M" (month) and "Y" (year) in various
combinations.

Edit masks for time fields can include the characters "H" (hour), "I" (minute), "S" (second) and "T" (tenth of a
second) in various combinations.

In conjunction with edit masks for date and time fields, see alstatieeand time system variahles

Examples of Edit Masks
Some examples of edit masks, along with possible output they produce, are provided below.

In addition, the abbreviated notation for each edit mask is given. You can use either the abbreviated or the long
notation.

Edit Mask Abbreviation | Qutput A | Output B
EM=999.99 EM=9(3).9(2) |367.32 |005.40
EM=277779 EM=2(5)9(1) |0 579

EM=X"XXXXX |EM=X(1)"X(5) |B LUE A 19379

EM=XXX..XX |EM=X(3)..X(2)|BLU...E |AAB...01

EM=MM.DD.YY |* 01.05.87 |12.22.86

EM=HH.ILSS.T |** 08.54.12.714.32.54.3

Copyright © Software AG 2003 107

Example Program without EM Parameters Edit Masks - EM Parameter

* Use a date system variable.

** Use a time system variable.

For further information about edit masks, see the session pardtiveiarthe Parameter Reference
documentation.

Example Program without EM Parameters

** Example Program 'EDITMX01’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 SALARY (1:3)
2CITY
END-DEFINE
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY 'N AM E’ NAME /
'OCCUPATION’ JOB-TITLE
'SALARY’ SALARY (1:3)
'LOCATION’ CITY
SKIP 1
END-READ
END

The above program produces the following output which shows the default edit masks available:

Page 1 97-08-19 17:26:19
NAME SALARY LOCATION
OCCUPATION

JONES 46000 TULSA
MANAGER 42300

39300
JONES 50000 MOBILE
DIRECTOR 46000

42700
JONES 31000 MILWAUKEE
PROGRAMMER 29400

27600>

Example Program with EM Parameters

** Example Program 'EDITMX02’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 JOB-TITLE
2 SALARY (1:3)
END-DEFINE
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES’

108 Copyright © Software AG 2003

Edit Masks - EM Parameter Further Examples of Edit Masks

DISPLAY 'N A M E’ NAME (EM=XAXAXAXAXAXAXAXAXAXAXAXAXAXAX) |
FIRST-NAME (EM=...X(10)...)

'OCCUPATION JOB-TITLE (EM="___ 'X(12))
'SALARY’ SALARY (1:3) (EM="USD 'ZZZ,999)
SKIP 1
END-READ

END

The above program produces the following output. Compare the output with that of the previous program
(Example Program without EM Paramejdrssee how the EM specifications affect the way the fields are
displayed.

Page 1 97-08-19 17:26:29
NAME OCCUPATION SALARY
FIRST-NAME

JONES ___ MANAGER USD 46,000
.VIRGINIA ... USD 42,300

USD 39,300
JONES ___DIRECTOR USD 50,000
.MARSHA ... USD 46,000

USD 42,700
JONES ___ PROGRAMMER USD 31,000
.ROBERT ... USD 29,400

USD 27,600

Further Examples of Edit Masks

See the following example programs in library SYSEXPG:

e EDITMX03
e EDITMX04
e EDITMX05

Copyright © Software AG 2003 109

Vertical Displays Vertical Displays

Vertical Displays

This document describes how you can combine the features of the stat®i&éhtdY andWRITE to produce
vertical displays of field values.

The following topics are covered:

Creating Vertical Displays

Combining DISPLAY and WRITE

Tab Notation - T*-field

Positioning Notation x/y

DISPLAY VERT Statement

Tab Notation - P*-field

Further Example of DISPLAY VERT with WRITE Statement

Creating Vertical Displays

There are two ways of creating vertical displays:

® You can use a combination of the statem&i&PLAY andWRITE.
® You can use the VERT option of tbeSPLAY statement.

Combining DISPLAY and WRITE

As described irstatements DISPLAY and WRITEheDISPLAY statement normally presents the data in
columns with default headers, while M&RITE statement presents data horizontally without headers.

You can combine the features of the two statements to produce vertical displays of field values.

The DISPLAY statement produces the values of different fields for the same record across the page with a
column for each field. The field values for each record are displayed below the values for the previous record.

By using a WRITE statement after a DISPLAY statement, you can insert textand/or field values specified in the

WRITE statement between records displayed via the DISPLAY statement.

The following program illustrates the combination of DISPLAY and WRITE:

** Example Program 'WRITEX04’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 CITY
2 DEPT
END-DEFINE
READ (3) VIEWEMP BY CITY STARTING FROM 'SAN FRANCISCO’
DISPLAY NAME JOB-TITLE
WRITE 20T 'DEPT:’ DEPT
SKIP 1
END-READ
END

110 Copyright © Software AG 2003

Vertical Displays Tab Notation - T*field

It produces the following output:

Page 1 97-08-19 17:52:19
NAME CURRENT
POSITION
KOLENCE MANAGER

DEPT: TECHOS

GOSDEN ANALYST
DEPT: TECH10

WALLACE SALES PERSON
DEPT: SALE20

Tab Notation - T*field

In the previous example, the position of the field DEPT is determined by the tab nofafiarthis case "20T",
which means that the display begins in column 20 on the screen).

Field values specified inWRITE statement can be lined up automatically with field values specified in the first
DISPLAY statement of the program by using the tab notatidield (wherefield is the name of the field to
which the field is to be aligned).

In the following program, the output produced by the WRITE statement is aligned to the field JOB-TITLE by
using the notation "T*JOB-TITLE":

** Example Program '"WRITEXO05’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 DEPT
2CITY

END-DEFINE

READ (3) VIEWEMP BY CITY STARTING FROM 'SAN FRANCISCO’
DISPLAY NAME JOB-TITLE
WRITE T*JOB-TITLE 'DEPT:’ DEPT
SKIP 1

END-READ

END

Copyright © Software AG 2003 111

Positioning Notation x/y Vertical Displays

Page 1 97-08-19 17:52:19
NAME CURRENT
POSITION
KOLENCE MANAGER

DEPT: TECHO5

GOSDEN ANALYST
DEPT: TECH10

WALLACE SALES PERSON
DEPT: SALE20

Positioning Notationx/y

When you use thBISPLAY andWRITE statements in sequence and multiple lines are to be produced by the
WRITE statement, you can use the notatiyn((number-slash-number) to determine in which row/column
something is to be displayed. The positioning notation causes the next element in the DISPLAY or WRITE
statement to be placedines below the last output, beginning in coluynof the output.

The following program illustrates the use of this notation:

** Example Program 'WRITEXO06’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 MIDDLE-I
2 ADDRESS-LINE (1:1)
2CITY
2ZIP
END-DEFINE
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK’
DISPLAY 'NAME AND ADDRESS’ NAME
WRITE 1/5 FIRST-NAME 1/30 MIDDLE-I
2/5 ADDRESS-LINE (1:1)
3/5 CITY 3/30 zIP /
END-READ
END

112 Copyright © Software AG 2003

Vertical Displays DISPLAY VERT Statement

Page 1 97-08-19 17:55:47

NAME AND ADDRESS

RUBIN

WALLACE

KELLOGG

SYLVIA L
2003 SARAZEN PLACE
NEW YORK 10036

MARY P
12248 LAUREL GLADE C
NEW YORK 10036

HENRIETTA S
1001 JEFF RYAN DR.
NEWARK 19711

DISPLAY VERT Statement

The standard display mode in Natural is horizontal.

With theVERT clauseoption of theDISPLAY statement, you can override the standard display and produce a
vertical field display.

TheHORIZ clauseoption, which can be used in the same DISPLAY statement, re-activates the standard
horizontal display mode.

Column headings in vertical mode are controlled with various forms éfShelause

Without AS clauseno column headings will be output.

AS CAPTIONEDcauses default headings to be displayed.

AS textcauses the specifigelxtto be displayed as column heading. Note that a slash (/) withiexthe
element in a DISPLAY statement causes a line advance.

AS text CAPTIONED causes the specifigextto be displayed as column heading, and the default column
headings to be displayed immediately before the field value in each line that is output.

The following example programs illustrate the use oOH&PLAY VERT statement.

DISPLAY VERT without AS Clause

The following program has mMaS clausewhich means that no column headings are output.

Copyright © Software AG 2003 113

DISPLAY VERT AS CAPTIONED and HORIZ Vertical Displays

** Example Program 'DISPLX09’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2CITY

END-DEFINE

READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK’
DISPLAY VERT NAME FIRST-NAME / CITY
SKIP 2

END-READ

END

Note that all field values are displayed vertically underneath one another:

Page 1 97-08-19 17:55:47

RUBIN
SYLVIA

NEW YORK
WALLACE
MARY

NEW YORK

KELLOGG
HENRIETTA

NEWARK

DISPLAY VERT AS CAPTIONED and HORIZ

The following program contains\(ERT and aHORIZ clause, which causes some column values to be output
vertically and others horizontally; moreove® CAPTIONEDcauses the default column headers to be
displayed.

** Example Program 'DISPLX10’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2CITY
2 JOB-TITLE
2 SALARY (1:1)
END-DEFINE
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK’
DISPLAY VERT AS CAPTIONED NAME FIRST-NAME
HORIZ JOB-TITLE SALARY (1:1)
SKIP 1
END-READ
END

114 Copyright © Software AG 2003

Vertical Displays

DISPLAY VERT AS text

Page 1 97-08-19 17:55:47

NAME CURRENT ANNUAL
FIRST-NAME POSITION SALARY

RUBIN SECRETARY 17000

SYLVIA

WALLACE ANALYST 38000

MARY

KELLOGG DIRECTOR 52000

HENRIETTA

DISPLAY VERT AS text

The following program contains &8 textclause, which displays the specifiecttas column header.

** Example Program 'DISPLX11’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY
2 JOB-TITLE
2 SALARY (1:1)

END-DEFINE

READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK’
DISPLAY VERT AS 'EMPLOYEES’ NAME FIRST-NAME
HORIZ JOB-TITLE SALARY (1:1)

SKIP 1
END-READ
END

Page 1 97-08-19 7:55:47

EMPLOYEES CURRENT ANNUAL
POSITION SALARY

RUBIN SECRETARY 17000
SYLVIA

WALLACE ANALYST 38000
MARY

KELLOGG DIRECTOR 52000
HENRIETTA

Copyright © Software AG 2003

115

DISPLAY VERT AS text CAPTIONED Vertical Displays

DISPLAY VERT AS text CAPTIONED

The following program contains &8 text CAPTIONED clause.

** Example Program 'DISPLX12’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2CITY
2 JOB-TITLE
2 SALARY (1:1)
END-DEFINE
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK’
DISPLAY VERT AS 'EMPLOYEES’ CAPTIONED NAME FIRST-NAME
HORIZ JOB-TITLE SALARY (1:1)
SKIP 1
END-READ
END

This clause causes the default column headers (NAME and FIRST-NAME) to be placed before the field values:

Page 1 97-04-19 17:55:47
EMPLOYEES CURRENT ANNUAL
POSITION SALARY
NAME RUBIN SECRETARY 17000

FIRST-NAME SYLVIA

NAME WALLACE ANALYST 38000
FIRST-NAME MARY

NAME KELLOGG DIRECTOR 52000
FIRST-NAME HENRIETTA

Tab Notation P*field

If you use a combination &ISPLAY VERT statement and subsequ&RITE statement, you can use the tab
notationP*field-namein the WRITE statement to align the position of a field to the colanthine position of
a particular field specified in the DISPLAY VERT statement.

In the following program, the fields SALARY and BONUS are displayed in the same column, SALARY in
every first line, BONUS in every second line.

The text "***SALARY PLUS BONUS***" is aligned to SALARY, which means that it is displayed in the same
column as SALARY and in the first line, whereas the text "(IN US DOLLARS)" is aligned to BONUS and
therefore displayed in the same column as BONUS and in the second line.

** Example Program '"WRITEXO07’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2CITY
2 NAME
2 JOB-TITLE
2 SALARY (1:1)
2 BONUS (1:1,1:1)

116 Copyright © Software AG 2003

Vertical Displays Further Example of DISPLAY VERT with WRITE Statement

END-DEFINE
READ (3) VIEWEMP BY CITY STARTING FROM 'LOS ANGELES’
DISPLAY NAME JOB-TITLE VERT AS 'INCOME’ SALARY (1) BONUS (1,1)
WRITE P*SALARY "***SALARY PLUS BONUS***'
P*BONUS ’'(IN US DOLLARS)’

SKIP 1
END-READ
END
Page 1 97-08-19 18:14:11
NAME CURRENT INCOME
POSITION
POORE JR SECRETARY 25000
0
#*SALARY PLUS BONUS**
(IN US DOLLARS)
PREPARATA MANAGER 46000
9000
#*SALARY PLUS BONUS**
(IN US DOLLARS)
MARKUSH TRAINEE 22000
0
#*SALARY PLUS BONUS**
(IN US DOLLARS)

Further Example of DISPLAY VERT with WRITE
Statement

See the following example program in library SYSEXPG:

e WRITEX10

Copyright © Software AG 2003 117

Object Types Object Types

Object Types

This document describes the various types of Natural programming object that can be used to achieve an
efficient application structure.

The following topics are covered:

What Types of Programming Objects Are There?
Data Areas

Programs, Subprograms and Subroutines

Maps

Helproutines

Multiple Use of Source Code - Copycode
Documenting Natural Objects - Text

Creating Event Driven Applications - Dialog
Creating Component Based Applications - Class
Using Non-Natural Files - Resource

118 Copyright © Software AG 2003

What Types of Programming Objects Are There? What Types of Programming Objects Are There?

What Types of Programming Objects Are
There?

The following topics are covered:

® Types of Programming Objects
e Creating and Maintaining Objects

Types of Programming Objects

Within a Natural application, several types of programming objects can be used to achieve an efficient
application structure.

There are the following types of Natural programming objects:

Local Data Area
Global Data Area
Parameter Data Area
Program
Subprogram
Subroutine
Helproutine

Map

Copycode

Text

Class

Ressource

Creating and Maintaining Objects

To create and maintain all these objects, you usBaheral editors

Local data areas, global data areas and parameter data areas are created/maintained with the data area editor.
Maps are created/maintained with the map editor.

Dialogs are created/maintained with the dialog editor.

Classes are created/maintained with the Class Builder (Windows) or with the program editor (Mainframe,
UNIX).

All other types of objects listed above are created/maintained with the program editor.

Copyright © Software AG 2003 119

Data Areas Data Areas

Data Areas

The following topics are covered:

® Use of Data Areas

® Local Data Area

® Global Data Area

® Parameter Data Area

Use of Data Areas

As explained irDefining Fields all fields that are to be used in a program have to be definddifENE
DATA statement.

The fields can be defined within the DEFINE DATA statement itself; or they can be defined outside the program
in a separate data area, with the DEFINE DATA statement referencing that data area.

Natural supports three types of data areas:

® |ocal Data Area
In a local data area, you define the data elements that are to be used by a single Natural module in an
application.

® Global Data Area
In a global data area, you define the data elements that are to be used by more than one Natural program,
routine, etc. in an application.

® Parameter Data Area
In a parameter data area, you define the fields that are passed as parameters to a subprogram, external
subroutine or helproutine.

Local Data Area

Variables defined as local are used only within a single Natural module. There are two options for defining local
data:

® You can define the data within the program.
® You can define the data in a local data area outside the program.

In the first example, the fields are defined within EHEFINE DATA statement of the program. In the second
example, the same fields are defined in a local data area (LDA), and the DEFINE DATA statement only contains
a reference to that data area.

Example 1 - Fields Defined within a DEFINE DATA Statement:

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 PERSONNEL-ID

1 #VARI-A (A20)

1 #VARI-B (N3.2)

1 #VARI-C (14)

END-DEFINE

120 Copyright © Software AG 2003

Data Areas Global Data Area

Example 2 - Fields Defined in a Separate Data Area:

Program:

DEFINE DATA LOCAL
USING LDA39
END-DEFINE

Local Data Ared DA39":

I TL Name F Leng Index/Init/EM/Name/Comment
V 1 VIEWEMP EMPLOYEES
2 NAME A 20
2 FIRST-NAME A 20
2 PERSONNEL-ID A 8
1 #VARI-A A 20
1 #VARI-B N 3.2
1 #VARI-C I 4

For a clear application structure, it is usually better to define fields in data areas outside the programs.

Global Data Area

In a global data area (GDA), you define the data elements that are to be used by more than one program, routine,
etc. in an application.

Variables defined in a global data area may be referenced by several objects in an application.

Frogram A Global Data Area GDA1

DEFINE DATA GLOBAL
USING GDA1 >
EMD-DEFINE

Frogram B

DEFINE DATA GLOBAL
USING GDAA >
EMD-DEFIMNE

The global data area and the objects which reference it must be in the same library (or a steplib).
Global data areas must be defined with the data area editor, and a program using that data area must reference it

in theDEFINE DATA statement. Any number of main programs, external subroutines and helproutines can
share the same global data area.

Copyright © Software AG 2003 121

Parameter Data Area Data Areas

Each object can reference only one global data area; that is, a DEFINE DATA statement must not contain more
than oneGLOBAL clause.

Note:

When you build an application where multiple objects share a global data area, remember that modifications to a
global data area affect all programs or routines that reference that data area. Therefore these objects must be
STOWed again after the global data area has been modified.

When are Global Data Areas Initialized?

A global data area is initialized when it is used for the first time. It remains active in the current Natural session
(that is, the variables in the global data area retain their contents) until:

® the nexttOGON, or

e another global data area is used on the same level (levels are described later in this section), or

® aRELEASE VARIABLESstatement is executed. In this case, the variables in the global data area are reset
when either the execution of the level 1 program is finished, or the program invokes another program via a
FETCHor RUN statement.

Note:
If a GDA named "COMMON" exists in a library, the program named ACOMMON is invoked automatically
when you LOGON to that library.

Parameter Data Area

Parameter data areas (PDAS) are used by subprograms and external subroutines.

A subprogram is invoked with@ALLNAT statement. With the CALLNAT statement, parameters can be
passed from the invoking object to the subprogram.

These parameters must be defined wilbE&rINE DATA PARAMETER statement in the subprogram:

e they can be defined in the PARAMETER clause ofiE#-INE DATA statement itself; or
e they can be defined in a separate parameter data area, WitBFldE DATA PARAMETER statement
referencing that parameter data area.

Parameter Defined within DEFINE DATA PARAMETER Statement

122 Copyright © Software AG 2003

Data Areas Parameter Defined in Parameter Data Area

Local Data Area LDA

1 #PARM1 (A20)
1 #PARM2Z (MN2)

Invaking Object P Subprogram SUEP1
DEFINE DATA
GLOBAL USING ..

LOCAL USING LDA1
EMD-DEFIME

Ii1-3-.||3'.LLf\:l.ﬂ'lT SUBP1 #PARM1 #PARM2

END

Parameter Defined in Parameter Data Area

In the same way, parameters that are passed to an external subroutiREREB@RMstatement must be
defined with EDEFINE DATA PARAMETERSstatement in the external subroutine.

In the invoking object, the parameter variables passed to the subprogram/ subroutine need not be defined in a
parameter data area; in the illustrations above, they are defined in the local data area used by the invoking object
(but they could also be defined in a global data area).

The sequence, format and length of the parameters specified wZALth&NAT /PERFORMstatement in the
invoking object must exactly match the sequence, format and length of the fields specified in the DEFINE
DATA PARAMETER statement of the invoked subprogram/subroutine. However, the names of the variables in
the invoking object and the invoked subprogram/subroutine need not be the same (as the parameter data are
transferred by address, not by name).

Copyright © Software AG 2003 123

Programs, Subprograms and Subroutines Programs, Subprograms and Subroutines

Programs, Subprograms and Subroutines

This document discusses those object types which can be invoked as routines; that is, as subordinate programs.

Helproutines and maps, although they are also invoked from other objects, are strictly speaking not routines as
such, and are therefore discussed in separate documeriiglgeritinesandMaps

The following topics are covered:

A Modular Application Structure

Multiple Levels of Invoked Objects
Program

Subroutine

Subprogram

Processing Flow when Invoking a Routine

A Modular Application Structure

Typically, a Natural application does not consist of a single huge program, but is split into several modules. Each
of these modules will be a functional unit of manageable size, and each module is connected to the other
modules of the application in a clearly defined way. This provides for a well structured application, which makes
its development and subsequent maintenance a lot easier and faster.

During the execution of a main program, other programs, subprograms, subroutines, helproutines and maps can
be invoked. These objects can in turn invoke other objects (for example, a subroutine can itself invoke another
subroutine). Thus, the modular structure of an application can become quite complex and extend over several
levels.

Multiple Levels of Invoked Objects

Each invoked object is one level below the level of the object from which it was invoked; that is, with each
invocation of a subordinate object, the level number is incremented by 1.

Any program that is directly executed is at Level 1; any subprogram, subroutine, map or helproutine directly
invoked by the main program is at Level 2; when such a subroutine in turn invokes another subroutine, the latter
is at Level 3.

A program invoked with a FETCH statement from within another object is classified as a main program,
operating from Level 1. A program that is invoked with FETCH RETURN, however, is classified as a
subordinate program and is assigned a level one below that of the invoking object.

The following illustration is an example of multiple levels of invoked objects and also shows how these levels
are counted:

124 Copyright © Software AG 2003

Programs, Subprograms and Subroutines Program

Level 1
Level 2
Level 3 . .
Subprogram ‘ Subroutine ‘ Helproutine ‘
Level 4

If you wish to ascertain the level number of the object that is currently being executed, you can use the system
variable*LEVEL (which is described in th®ystem Variables documentatjon

This document discusses the following Natural object types, which can be invoked as routines (that is,
subordinate programs):

® program
® subroutine
® subprogram

Helproutines and maps, although they are also invoked from other objects, are strictly speaking not routines as
such, and are therefore discussed in separate documeriiglgeritinesandMaps

Basically, programs, subprograms and subroutines differ from one another in the way data can be passed
between them and in their possibilities of sharing each other’s data areas. Therefore the decision which object
type to use for which purpose depends very much on the data structure of your application.

Program
A program can be executed - and thus tested - by itself.

® To compile and execute a source program, you use the system coRbiand
® To execute a program that already exists in compiled form, you use the system caaxBaiTE

A program can also be invoked from another object wkE&CH or FETCH RETURNstatement. The
invoking object can be another progransudprogramsubroutineor helproutine

Copyright © Software AG 2003 125

Program Invoked with FETCH RETURN Programs, Subprograms and Subroutines

® When a program is invoked with FETCH RETURN, the execution of the invoking object will be suspended
- not terminated - and the FETCHed program will be activatedsabadinate program. When the
execution of the FETCHed program is terminated, the invoking object will be re-activated and its execution
continued with the statement following the FETCH RETURN statement.

® \When a program is invoked with FETCH, the execution of the invoking object will be terminated and the
FETCHed program will be activated amain program. The invoking object will not be re-activated upon
termination of the FETCHed program.

Program Invoked with FETCH RETURN

Local Data Area LDA1 Local Data Area LDAZ

Global Data Area GDA1

Inwoking Object P Program PROG2
DEFIMNE DATA
GLOBAL USING GDAA1

LOCAL USING LDA1
END-DEFINE

FETCH RETURN PROG2 »

END

A program invoked withFETCH RETURNCcan access the global data area used by the invoking object.

In addition, every program can have its own local data area, in which the fields that are to be used only within
the program are defined.

126 Copyright © Software AG 2003

Programs, Subprograms and Subroutines Subroutine

However, a program invoked with FETCH RETURN cannot have its own global data area.

Program Invoked with FETCH

Local Data Area LDA1 Local Data Area LDAZ

Global Data Area GDA1 Global Data Area GDAZ

Imvoking Object # PFrogram PROGZ
DEFINE DATA
GLOBAL USING GDA1

LOCAL USING LDA1
END-DEFINE

FETCH PROG2 —-

END

A program invoked with FETCH as a main program usually establishes its own global data area (as shown in the
illustration above). However, it could also use the same global data area as established by the invoking object.

Note:

A source program can also be invoked with a RUN statement; sB&Jtistatemenin the Natural Statements
documentation.

Subroutine

The statements that make up a subroutine must be defined wdERIAIE SUBROUTINE...
END-SUBROUTINE statement block.

Copyright © Software AG 2003 127

Inline Subroutine Programs, Subprograms and Subroutines

A subroutine is invoked with BERFORMstatement.
A subroutine may be anline subroutine or anexternal subroutine

® An inline subroutine is defined within the object which contains the PERFORM statement that invokes it.
® An external subroutineis defined in a separate object - of type subroutine - outside the object which
invokes it.

If you have a block of code which is to be executed several times within an object, it is useful to use an inline
subroutine. You then only have to code this block once within a DEFINE SUBROUTINE statement block and
invoke it with several PERFORM statements.

Inline Subroutine

Local Data Area LDA1

Global Data Area GDA1

Invoking Object

128 Copyright © Software AG 2003

Programs, Subprograms and Subroutines External Subroutine

An inline subroutine can be contained within a programming object of type program, subprogram, subroutine or
helproutine.

If an inline subroutine is so large that it impairs the readability of the object in which it is contained, you may
consider putting it into an external subroutine, so as to enhance the readability of your application.

External Subroutine

Local Data Area LDA1 Local Data Area LDAZ

Global Data Area GDA1

Irvoking Ohbject P Subroutine

DEFINE DATA
GLOBAL USING GDA1
LOCAL USING LDAT
END-DEFINE

E‘-EF!FDR M SUBR1 #PARM1 #FPARM2

END

An external subroutine - that is, an object of type subroutine - cannot be executed by itself. It must be invoked
from another object. The invoking object can be a program, subprogram, subroutine or helproutine.

Data Available to an Inline Subroutine

An inline subroutine has access to the local data area and the global data area used by the object in which it is
contained.

Copyright © Software AG 2003 129

Subprogram Programs, Subprograms and Subroutines

Data Available to an External Subroutine
An external subroutine can access the global data area used by the invoking object.

Moreover, parameters can be passed witlPtBRFORMstatement from the invoking object to the external
subroutine. These parameters must be defined either DERENE DATA PARAMETERstatement of the
subroutine, or in @arameter data areged by the subroutine.

In addition, an external subroutine can havéoital data arean which the fields that are to be used only within
the subroutine are defined.

However, an external subroutine cannot have its global data area

Subprogram

Typically, a subprogram would contain a generally available standard function that is used by various objects in
an application.

A subprogram cannot be executed by itself. It must be invoked from another object. The invoking object can be a
program, subprogram, subroutine or helproutine.

A subprogram is invoked with@ALLNAT statement.

When the CALLNAT statement is executed, the execution of the invoking object will be suspended and the
subprogram executed. After the subprogram has been executed, the execution of the invoking object will be
continued with the statement following the CALLNAT statement.

Data Available to a Subprogram

With the CALLNAT statement, parameters can be passed from the invoking object to the subprogram. These
parameters are the only data available to the subprogram from the invoking object. They must be defined either
in theDEFINE DATA PARAMETER statement of the subprogram, or ipaaameter data aresed by the
subprogram.

130 Copyright © Software AG 2003

Programs, Subprograms and Subroutines Processing Flow when Invoking a Routine

Local Data Area LDA1 Local Data Area LDAZ

Global Data Area GDA1

Irvoking Ohbject P Subroutine

DEFINE DATA
GLOBAL USING GDA1
LOCAL USING LDAT
END-DEFINE

CALLNAT SUBP1 #PARM1 #PARM2

END

In addition, a subprogram can have its own local data area, in which the fields to be used within the subprogram
are defined.

If a subprogram in turn invokes a subroutine or helproutine, it can also establish its own global data area to be
shared with the subroutine/helproutine.

Processing Flow when Invoking a Routine

When theCALLNAT , PERFORMor FETCH RETURNstatement that invokes a routine - a subprogram, an
external subroutine, or a program respectively - is executed, the execution of the invoking object is suspended
and the execution of the routine begins.

The execution of the routine continues until eitheEND statement is reached or processing of the routine is
stopped by aESCAPE ROUTINEstatement being executed.

In either case, processing of the invoking object will then continue with the statement following the CALLNAT,
PERFORM or FETCH RETURN statement used to invoke the routine.

Copyright © Software AG 2003 131

Processing Flow when Invoking a Routine Programs, Subprograms and Subroutines

Example:

Invoking Object Invoked Object

DEFINE DATA

GLOBAL USING ...
LOCAL USING LDA1
EMD-DEFINE

PERFORM SUBR1 L
| 3

- -

END

132 Copyright © Software AG 2003

Maps Maps

Maps

As an alternative to dynamic screen layout specificationNR&T statement offers the possibility to use
predefined map layouts which makes use of the Natural object type "map".

The following topics are covered:

Benefits of Using Maps

Types of Maps

Creating Maps

Starting/Stopping Map Processing

Benefits of Using Maps

Usingpredefined map layoutsither thardynamic screen layout specificationfers various advantages such
as:

e Clearly structured applications as a result of a consequent separation of program logic and display logic.

® Map layout modifications possible without making changes to the body programs.

® The language of an applications’s user interface can be easily adapted for internationalization or
localization.

At least, when it comes to maintaining existing Natural applications, the profit of using programming objects
such as maps will become obvious.

Types of Maps
Maps (screen layouts) are those parts of an application which the users see on their screens.
The following types of maps exist:

® [nput Map
The dialog with the user is done via input maps.

o Output Map
If an application produces any output report, this report can be displayed on the screen by using an output
map.

® Help Map
Help maps are, in principle, like any other maps, but when they are assigned as help, additional checks are
performed to ensure their usability for help purpose.

The object type "map" comprises

e the map body which defines the screen layout and
® an associategarameter data aréBDA) which, as a sort of interface, contains data definitions such as
name, format, length of each field presented on a specific map.

Related Topics:

® [or information on selection boxes that can be attached to input field®8Bse®election Boin the INPUT
statement documentation a8 - Selection Boxn the Natural Parameter Reference documentation.

® For information on split screen maps where the upper portion may be used as an output map and the lower
portion as an input map, s8elit-Screen Featuria the INPUT statement documentation.

Copyright © Software AG 2003 133

Creating Maps Maps

Creating Maps

Maps and help map layouts are created and edited in the map editor. The appropriate LDA is created and
maintained in the data area editor.

Depending on the platform on which Natural is installed, these editors have either a character user interface or a
graphical user interface.

Related Topics:

e For information on using the map editor, 8é&p Editorin the platform-specific Natural Editor
documentation.

e For information on using the map editor, &&a Area Editoin the platform-specific Natural Editor
documentation.

® [or a comprehensive description of the full range of possibilities provided by the Natural map editor
(character-user-interface version), Sesorial - Using the Map Editor

e For information on , seByntax 1 - Dynamic Screen Laydspecification in the INPUT statement
documenation.

e For information on input processing using a map layout created with the map edi@yntee?2 - Using
Predefined Map Layoun the INPUT statement documenation.

Starting/Stopping Map Processing
An input map is invoked with anNPUT USING MAPstatement.
An output map is invoked with aVRITE USING MAPstatement.

Processing of a map can be stopped witE8GAPE ROUTINEstatement in a processing rule.

134 Copyright © Software AG 2003

Helproutines Helproutines

Helproutines

Helproutines have specific characteristics to facilitate the processing of help requests. They may be used to
implement complex and interactive help systems. They are created with the program editor.

The following topics are covered below:

Invoking Help

Specifying Helproutines

Programming Considerations for Helproutines
Passing Parameters to Helproutines

Help as a Window

Invoking Help

A Natural user can invoke a Natural helproutine either by entering the help character (the default character is
"?") in a field, or by pressing the help key (usually PF1).

Note 1:

® The help character must be entered only once.
® The help character must be the only character modified in the input string.
® The help character must be the first character in the input string.

Note 2:

If a helproutine is specified for a numeric field, Natural will allow a question mark to be entered for the purpose
of invoking the helproutine for that field. Natural will still check that valid numeric data are provided as field
input.

If not already specified, the help key may be specified witlsthe KEY statement:
SET KEY PF1=HELP

A helproutine can only be invoked by a user if it has been specified imdgeamor mapfrom which it is to be
invoked.

Specifying Helproutines
A helproutine may be specified:

® in a program: at statement level and at field level;
® in a map: at map level and at field level.

If a user requests help for a field for which no help has been specified, or if a user requests help without a field
being referenced, the helproutine specified at the statement or map level is invoked.

A helproutine may also be invoked by usinBEINPUT USING HELPstatement (either in the program itself or
in a processing rule). If the REINPUT USING HELP statement contaif&RK option, the helproutine
assigned to the MARKed field is invoked. If no field-specific helproutine is assigned, the map helproutine is
invoked.

Copyright © Software AG 2003 135

Programming Considerations for Helproutines Helproutines

A REINPUT statement in a helproutine may only applyN@UT statements within the same helproutine.
The name of a helproutine may be specified either with the session pardBetean INPUT statement:
INPUT (HE="HELP2112")

or using the extending field editing facility of the map editor Gesating Mapsnd theNatural Editor
documentation

The name of a helproutine may be specified as an alphanumeric constant or as an alphanumeric variable
containing the name. If it is a constant, the name of the helproutine must be specified within apostrophes.

Programming Considerations for Helproutines

Processing of a helproutine can be stopped witBR2OAPE ROUTINEstatement.

Be careful when usingND OF TRANSACTIONor BACKOUT TRANSACTION statements in a helproutine,
because this will affect the transaction logic of the main program.

Passing Parameters to Helproutines

A helproutine can access the currently actjiabal data areébut it cannot have its own global data area). In
addition, it can have its owncal data area

Data may also be passed from/to a helproutine via parameters. A helproutine may have up to 20 explicit
parameters and one implicit parameter. The explicit parameters are specified with the "HE" operand after the
helproutine name:

HE="MYHELP’,’001’

The implicit parameter is the field for which the helproutine was invoked:

INPUT #A (A5) (HE="YOURHELP’,’001")

where "001" is an explicit parameter and "#A" is the implicit parameter/the field.

This is specified within th®EFINE DATA PARAMETERstatement of the helproutine as:

DEFINE DATA PARAMETER

1 #PARML1 (A3) [* explicit parameter
1 #PARM2 (A5) [* implicit parameter
END-DEFINE

Please note that the implicit parameter (#PARM2 in the above example) may be omitted. The implicit parameter
is used to access the field for which help was requested, and to return data from the helproutine to the field. For
example, you might implement a calculator program as a helproutine and have the result of the calculations
returned to the field.

Note 1:
When help is called, the helproutine is called before the data are passed from the screen to the program data
areas. This means that helproutines cannot access data entered within the same screen transaction.

Once help processing is complete, the screen data will be refreshed: any fields which have been modified by the
helproutine will be updated - excluding fields which had been modified by the user before the helproutine was
invoked, but including the field for which help was requested.

Exception: If the field for which help was requested is split into several parts by dynamic attribiteg¢sion
parameter), and the part in which the question mark is enteaéidria part modified by the user, the field

content will not be modified by the helproutine.

136 Copyright © Software AG 2003

Helproutines Equal Sign Option

Note 2:
Attribute control variables are not evaluated again after the processing of the helproutine, even if they have been
modified within the helproutine.

Equal Sign Option
The equal sign (=) may be specified as an explicit parameter:
INPUT PERSONNEL-NUMBER (HE='HELPROUT’ =)

This parameter is processed as an internal field (A65) which contains the field name (or map name if specified at
map level). The corresponding helproutine starts with:

DEFINE DATA PARAMETER

1 FNAME (A65) /* contains 'PERSONNEL-NUMBER’
1 FVALUE (N8) /* value of field (optional)
END-DEFINE

This option may be used to access one common helproutine which reads the field name and provides
field-specific help by accessing the application online documentation or the Predict data dictionary.

Array Indices

If the field selected by the help character or the help keyasragelement, its indices are supplied as implicit
parameters (1 - 3 depending on rank, regardless of the explicit parameters).

The format/length of these parameters is 12.
INPUT A(*,*) (HE="HELPROUT',=)
The corresponding helproutine starts with:

DEFINE DATA PARAMETER

1 FNAME (A65) [* contains 'A’

1 FVALUE (N8) [* value of selected element
1 FINDEX1 (12) /* 1st dimension index

1 FINDEX2 (12) /* 2nd dimension index
END-DEFINE

Help as a Window

The size of a help to be displayed may be smaller than the screen size. In this case, the help appears on the screen
as a window, enclosed by a frame:

Copyright © Software AG 2003 137

Help as a Window Helproutines

AR ERRR AR AR AR AR R AR R AR AR AR R AR AR R AR R AR R AR AR AR R AR AR R AR R A AR AR AR AR AR RS
PERSONNEL INEORM™TION

FLEASE ENTER NAME: 2
FLEASE ENTER CITY:

TYFE IM . TO STOP
Type in the name of an
enploses in the £irst
field and press ENTER.
Yor will then receive

a list 0f all enployees
of that name.

of a certain name who
liye in a certain city,
type in & name in the
first field and a city

! din the second £ield
| and press ENTER.

1

1

1

1

1

1

1

!

Tor a list of enployess !
1

1

1

1

1

1

AEEAEIEEEIREIEEIEEL | 1

| X EEIAEEREEEEIEELREIIEIEELRELE

Within a helproutine, the size of the window may be specified as follows:

® by aFORMAT statement (for example, to specify the page size and line size: FORMAT PS=15 LS=30);

o by anINPUT USING MAPstatement; in this case, the size defined for the map (in its map settings) is used,;

o by aDEFINE WINDOW statement; this statement allows you to either explicitly define a window size or
leave it to Natural to automatically determine the size of the window depending on its contents.

The position of a help window is computed automatically from the position of the field for which help was
requested. Natural places the window as close as possible to the corresponding field without overlaying the field.
With the DEFINE WINDOW statement, you may bypass the automatic positioning and determine the window
position yourself.

For further information on window processing, please refer tDEEINE WINDOW statement in the Natural
Statements documentation and the terminal comr@ndn the Natural Terminal Commands documentation.

138 Copyright © Software AG 2003

Multiple Use of Source Code - Copycode Multiple Use of Source Code - Copycode

Multiple Use of Source Code - Copycode

This document describes the advantages and the use of copycode.
The following topics are covered:

e Use of Copycode
® Processing of Copycode

Use of Copycode
Copycode is a portion of source code which can be included in another objectN@LAIDE statement.

So, if you have a statement block which is to appear in identical form in several objects, you may use copycode
instead of coding the statement block several times. This reduces the coding effort and also ensures that the
blocks are really identical.

Processing of Copycode

The copycode is included at compilation; that is, the source-code lines from the copycode are not physically
inserted into the object that contains INELUDE statement, but they will be included in the compilation
process and are thus part of the resulting object module.

Consequently, when you modify the source code of copycode, you also have to newly (Sh(pWé all
objects which use that copycode.

Copycode cannot be executed on its own. It cann&T@\ed, but onlySAVEd.

For further information on copycode, please refer to the description N@i8JDE statemenin the Natural
Statements documentation.

Note:
An END statement must not be placed within a copycode.

Copyright © Software AG 2003 139

Documenting Natural Objects - Text Documenting Natural Objects - Text

Documenting Natural Objects - Text

The Natural object type "text" is used to write text rather than programs.
The following topics are covered:

® Use of Text Objects
® \Writing Text

Use of Text Objects

You can use this type of object to document Natural objects in more detail than you can, for example, within the
source code of a program.

"Text" objects may also be useful at sites where Predict is not available for program documentation purposes.

Writing Text
You write the text using the Natural program editor.

The only difference in handling as opposed to writing programs, is that the text you write stays as it is, that is,
there is no lower to upper case translation or empty line suppression (provided in your editor profile Empty Line
Suppression is set to "N" and Editing in Lower Case is set to "Y", séatheal Editor documentatidior more
details).

You can write any text you wish (there is no syntax check).

"Text" objects can only b8SAVEd, they cannot bETOWed. They cannot BRUN, only displayed in the editor.

140 Copyright © Software AG 2003

Creating Event Driven Applications - Dialog Creating Event Driven Applications - Dialog

Creating Event Driven Applications -
Dialog

Dialogs are used in conjunction with event-driven programming when creating Natural applications for graphical
user interfaces (GUIs).

For information on dialogs and event-driven programming, please refer to Event-Driven Programming in the
Natural for Windows documentation.

Copyright © Software AG 2003 141

Creating Component Based Applications - Class Creating Component Based Applications - Class

Creating Component Based Applications -
Class

Classes are used to apply an object based programming style.

On Windows platforms, classes are used to create component based applications in a client/server environment.
For more information, refer to the Natural for Windows documentation.

For information on classes, please refer toNh&uralX documentation.

142 Copyright © Software AG 2003

Using Non-Natural Files - Resource Using Non-Natural Files - Resource

Using Non-Natural Files - Resource

Shared and private resources are only available with Natural under UNIX and Windows. For more information,
refer to the Natural for Windows or Natural for UNIX documentation.

Copyright © Software AG 2003 143

Further Programming Aspects

Further Programming Aspects

The following topics are covered:

144

END/STOP Statements

Conditional Processing - IF Statement
Loop Processing

Control Breaks

Data Computation

System Variables and System Functions
Stack

Processing of Date Information

Further Programming Aspects

Copyright © Software AG 2003

END/STOP Statements END/STOP Statements

END/STOP Statements

The following topics are covered:

® End of Program - END Statement
e End of Application - STOP Statement

End of Program - END Statement

The END statement is used to mark the end of a Natural program, subprogram, external subroutine or
helproutine.

Every one of these objects must contain an END statement as the last statement.

Every object may contain only one END statement.

End of Application - STOP Statement

The STOPstatement is used to terminate the execution of a Natural application. A STOP statement executed
anywhere within an application immediately stops the execution of the entire application.

Copyright © Software AG 2003 145

Conditional Processing - IF Statement Conditional Processing - IF Statement

Conditional Processing - IF Statement

With thelF statement, you define a logical condition, and the execution of the statement attached to the IF
statement then depends on that condition.

The following topics are covered:

Structure of IF Statement
Example of IF Statement

Nested IF Statements

Example of Nested IF Statements
Further Example of IF Statement

Structure of IF Statement

The IF statement contains three components:

IF In the IF clause, you specify the logical condition which is to be met.
THEN In the THEN clause you specify the statement(s) to be executed if this condition is met.

In the (optional) ELSE clause, you can specify the statement(s) to be executed if this contition is

ELSE
met.

So, an IF statement takes the following general form:

IF condition
THEN execute statement(s)
ELSE execute other statement(s)
END-IF

If you wish a certain processing to be performed only if the IF conditiootimet, you can specify the clause
THEN IGNORE ThelGNORE statement causes the |IF condition to be ignored if it is met.

For more information on logical conditions, $general Informatiof the Natural Statements documentation.

Example of IF Statement

** Example Program '[FX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 BIRTH
2 CITY
2 SALARY (1:1)
END-DEFINE
*
LIMIT 7
READ MYVIEW BY CITY STARTING FROM 'C’
IF SALARY (1) LT 40000 THEN
WRITE NOTITLE "***** NAME 30X 'SALARY LT 40000’
ELSE

146 Copyright © Software AG 2003

Conditional Processing - IF Statement Nested IF Statements

DISPLAY NAME BIRTH (EM=YYYY-MM-DD) SALARY (1)
END-IF
END-READ
END

The IF statement block in the above program causes the following conditional processing to be performed:

® |F the salary is less than 40000, THEN WRITE statement is to be executed;
e otherwise (ELSE), that is, if the salary is 40000 or moreDUIS’LAY statement is to be executed.

The program produces the following output:

NAME DATE ANNUAL
OF SALARY
BIRTH

wek KEEN SALARY LT 40000
¥k FORRESTER SALARY LT 40000
wek JONES SALARY LT 40000
week MELKANOFF SALARY LT 40000
DAVENPORT 1948-12-25 42000

GEORGES 1949-10-26 182800

wxx FULLERTON SALARY LT 40000

Nested IF Statements

It is possible to use various nestedstatements; for example, you can make the execution of a THEN clause
dependent on another IF statement which you specify iftifeN clause.

Example of Nested IF Statements

** Example Program 'IFX02’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 CITY
2 SALARY (1:1)
2 BIRTH
2 PERSONNEL-ID
1 MYVIEW2 VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE
1 #BIRTH (D)
END-DEFINE

*

MOVE EDITED ’19450101’ TO #BIRTH (EN=YYYYMMDD)
*
LIMIT 20
FND1. FIND MYVIEW WITH CITY ='BOSTON’
SORTED BY NAME
IF SALARY (1) LESS THAN 20000
THEN WRITE NOTITLE ***** NAME 30X 'SALARY LT 20000’
ELSE
IF BIRTH GT #BIRTH
FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (FND1.)

Copyright © Software AG 2003 147

Further Example of IF Statement Conditional Processing - IF Statement

DISPLAY (IS=ON) NAME BIRTH (EM=YYYY-MM-DD)
SALARY (1) MAKE (AL=8 IS=OFF)
END-FIND
END-IF
END-IF
SKIP 1
END-FIND
END

The above program with nested IF statements produces the following output:

NAME DATE ANNUAL MAKE
OF SALARY
BIRTH
*xk COHEN SALARY LT 20000
CREMER 1972-12-14 20000 FORD
*k ELEMING SALARY LT 20000
¥k GREENACRE SALARY LT 20000
PERREAULT 1950-05-12 30500 CHRYSLER
*rrk SHAW SALARY LT 20000
STANWOOD 1946-09-08 31000 CHRYSLER
FORD

Further Example of IF Statement

See the following example program in library SYSEXPG:

e |FX03

148 Copyright © Software AG 2003

Loop Processing Loop Processing

Loop Processing

A processing loop is a group of statements which are executed repeatedly until a stated condition has been
satisfied, or as long as a certain condition prevails.

The following topics are covered:

Use of Processing Loops

Limiting Database Loops

Limiting Non-Database Loops - REPEAT Statement
Example of REPEAT Statement

Terminating a Processing Loop - ESCAPE Statement
Loops within Loops

Example of Nested FIND Statements

Referencing Statements within a Program

Example of Referencing with Line Numbers

Example with Statement Reference Labels

Use of Processing Loops
Processing loops can be subdivided into database loops and non-database loops:

e Database processing loops
are those created automatically by Natural to process data selected from a database as aREA\L, of a
FIND or HISTOGRAM statement.
These statements are described in the seDédabase Access
® Non-database processing loops
are initiated by the statemem&PEAT, FOR CALL FILE, CALL LOOP, SORT, andREAD WORK
FILE.

More than one processing loop may be active at the same time. Loops may be embedded or nested within other
loops which remain active (open).

A processing loop must be explicitly closed with a corresporieiD-... statement (for example,
END-REPEAT, END-FOR, etc.)

The SORT statement, which invokes the sort program of the operating system, closes all active processing loops
and initiates a new processing loop.

Limiting Database Loops

Possible Ways of Limiting Database Loops
LT Session Parameter

LIMIT Statement

Limit Notation

Priority of Limit Settings

Copyright © Software AG 2003 149

Limiting Non-Database Loops - REPEAT Statement Loop Processing

Possible Ways of Limiting Database Loops

With the statement®EAD, FIND or HISTOGRAM, you have three ways of limiting the number of repetitions
of the processing loops initiated with these statements:

® using thesession parameter LT
® using aLIMIT statement
® or using dimit notationin a READ/FIND/HISTOGRAM statement itself.

LT Session Parameter

With the system commar@LOBALS, you can specify the session paramkferwhich limits the number of
records which may be read in a database processing loop.

Example:
GLOBALS LT=100

This limit applies to alREAD, FIND andHISTOGRAM statements in the entire session.

LIMIT Statement

In a program, you can use thBMIT statement to limit the number of records which may be read in a database
processing loop.

Example:
LIMIT 100

The LIMIT statement applies to the remainder of the program unless it is overridden by another LIMIT
statement or limit notation.

Limit Notation

With aREAD, FIND or HISTOGRAM statement itself, you can specify the number of records to be read in
parentheses immediately after the statement name.

Example:
READ (10) VIEWXYZ BY NAME

This limit notation overrides any other limit in effect, but applies only to the statement in which it is specified.

Priority of Limit Settings

If the limit set with theL T parameter is smaller than a limit specified withldIT statement or a limit notation,
the LT limit has priority over any of these other limits.

Limiting Non-Database Loops - REPEAT Statement

Non-database processing loops begin and end based on logical condition criteria or some other specified limiting
condition.

The REPEAT statement is discussed here as representative of a non-database loop statement.

150 Copyright © Software AG 2003

Loop Processing Example of REPEAT Statement

With the REPEAT statement, you specify one or more statements which are to be executed repeatedly.
Moreover, you can specify a logical condition, so that the statements are only executed either until or as long as
that condition is met. For this purpose you us&JBTIL or WHILE clause.

If you specify the logical condition

® in an UNTIL clause, the REPEAT loop will continuatil the logical condition is met;
® in a WHILE clause, the REPEAT loop will continas long aghe logical condition remains true.

If you specifyno logical condition, the REPEAT loop must be exited with one of the following statements:

® ESCAPE

terminates the execution of the processing loop and continues processing outside the mdpwsee
e STOP

stops the execution of the entire Natural application.
e TERMINATE

stops the execution of the Natural application and also ends the Natural session.

Example of REPEAT Statement

** Example Program 'REPEAX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 SALARY (1:1)
1 #PAY1 (N8)
END-DEFINE
*
READ (5) MYVIEW BY NAME WHERE SALARY (1) = 30000 THRU 39999
MOVE SALARY (1) TO #PAY1
REPEAT WHILE #PAY1 LT 40000
MULTIPLY #PAY1 BY 1.1
DISPLAY NAME (IS=ON) SALARY (1)(IS=ON) #PAY1
END-REPEAT
SKIP 1
END-READ
END

The above program produces the following output:

Page 1 97-08-19 18:42:53
NAME ANNUAL #PAY1
SALARY
ADKINSON 34500 37950
41745
33500 36850
40535
36000 39600
43560
AFANASSIEV 37000 40700
ALEXANDER 34500 37950
41745

Copyright © Software AG 2003 151

Terminating a Processing Loop - ESCAPE Statement Loop Processing

Terminating a Processing Loop - ESCAPE Statement
The ESCAPEstatement is used to terminate the execution of a processing loop based on a logical condition.

You can place an ESCAPE statement within loops in conditl&rstatement groups, in break processing
statement groupAT END OF DATA, AT END OF PAGE AT BREAK), or as a stand-alone statement
implementing the basic logical conditions of a non-database loop.

The ESCAPE statement offers the options TOP and BOTTOM, which determine where processing is to continue
after the processing loop has been left via the ESCAPE statement:

e ESCAPE TOHSs used to continue processing at the top of the processing loop.
e ESCAPE BOTTOMis used to continue processing with the first statement following the processing loop.

You can specify several ESCAPE statements within the same processing loop.

For further details and examples of EBE8CAPEstatement, see the Natural Statements documentation.

Loops Within Loops

A database statement can be placed within a database processing loop initiated by another database statement.
When database loop-initiating statements are embedded in this way, a "hierarchy" of loops is created, each of
which is processed for each record which meets the selection criteria.

Multiple levels of loops can be embedded. For example, non-database loops can be nested one inside the other.
Database loops can be nested inside non-database loops. Database and non-database loops can be nested within
conditional statement groups.

Example of Nested FIND Statements

The following program illustrates a hierarchy of two loops, withBiND loop nested or embedded within
another FIND loop.

** Example Program 'FINDXO06’
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 CITY
2 NAME
2 PERSONNEL-ID
1 VEH-VIEW VIEW OF VEHICLES
2 MAKE
2 PERSONNEL-ID
END-DEFINE
*
FND1. FIND EMPLOY-VIEW WITH CITY =’NEW YORK’ OR = 'BEVERLEY HILLS’
FIND (1) VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (FND1.)
DISPLAY NOTITLE NAME CITY MAKE
END-FIND
END-FIND
END

The above program selects data from multiple files. The outer FIND loop selects from the EMPLOYEES file all
persons who live in New York or Beverley Hills. For each record selected in the outer loop, the inner FIND loop
is entered, selecting the car data of those persons from the VEHICLES file. The program produces the following
output:

152 Copyright © Software AG 2003

Loop Processing Referencing Statements within a Program

NAME CITY MAKE
RUBIN NEW YORK FORD
OLLE BEVERLEY HILLS GENERAL MOTORS
ADKINSON BEVERLEY HILLS FORD
WALLACE NEW YORK MAZDA
SPEISER BEVERLEY HILLS FORD

Referencing Statements within a Program

Statement reference notation is used to refer to previous statements in a program in order to specify processing
over a particular range of data, to override Natural’s default referencing (as described for each statement in the
Natural Statements documentatierhere applicable), or for documentation purposes.

Any Natural statement which causes a processing loop to be initiated and/or causes data elements in a database
to be accessed. For example, the following statements can be referenced:

READ

FIND
HISTOGRAM
SORT
REPEAT
FOR

When multiple processing loops are used in a program, reference notation is used to uniquely identify the
particular database field to be processed by referring back to the statement that originally accessed that field in
the database. (If a field can be referenced in such a way, this is indicated in the "Reference Permitted" column of
the "Operand Definition Table" in the statement description ilNttaral Statements documentatjon

In addition, reference notation can be specified in some statements. For example:

AT START OF DATA
AT END OF DATA
AT BREAK

ESCAPE BOTTOM

Without reference notation, an AT START OF DATA, AT END OF DATA or AT BREAK statement will be
related to th@utermosiactive READ, FIND, HISTOGRAM, SORT or READ WORK FILE loop. With
reference notation, you can relate it to another active processing loop.

If reference notation is specified with BECAPE BOTTOMstatement, processing will continue with the first
statement following the processing loop identified by the reference notation.

Statement reference notation may be specified in the fornstatement labelor asource-code line number

A statement labelconsists of several characters, the last of which must be a period (.). The period serves to
identify the entry as a label.

A statement that is to be referenced is marked with a label by placing the label at the beginning of the line that
contains the statement. For example:

Copyright © Software AG 2003 153

Example of Referencing with Line Numbers Loop Processing

0030 ...
0040 READ1. READ VIEWXYZ BY NAME
0050 ...

In the statement that references the marked statement, the label is placed in parentheses at the location indicated
in the statement’s syntax diagram (as described iN#teral Statements documentadiofor example:

AT BREAK (READ1.) OF NAME

If source-code line numbeire used for referencing, they must be specified as 4-digit numbers (leading zeros
must not be omitted) and in parentheses. For example:

AT BREAK (0040) OF NAME

In a statement where the label/line number relates a particular field to a previous statement, the label/line number
is placed in parentheses after the field name. For example:

DISPLAY NAME (READ1.) JOB-TITLE (READ1.) MAKE MODEL

Line numbers and labels can be used interchangeably.

Example of Referencing with Line Numbers

The following program uses line numbers for referencing.

In this particular example, the line numbers refer to the statements that would be referenced in any case by
default.

0010 ** Example Program 'LABELX01’

0020 DEFINE DATA LOCAL

0030 1 MYVIEW1 VIEW OF EMPLOYEES

0040 2 NAME

0050 2 FIRST-NAME

0060 2 PERSONNEL-ID

0070 1 MYVIEW2 VIEW OF VEHICLES

0080 2 PERSONNEL-ID

0090 2 MAKE

0100 END-DEFINE

0110 *

0120 LIMIT 15

0130 READ MYVIEW1 BY NAME STARTING FROM "JONES’
0140 FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (0130)
0150 IF NO RECORDS FOUND

0160 MOVE "***NO CAR*** TO MAKE

0170 END-NOREC

0180 DISPLAY NOTITLE NAME (0130) (IS=ON) FIRST-NAME (0130) (IS=ON)
0190 MAKE (0140)

0200 END-FIND /* (0140)

0210 END-READ /* (0130)

0220 END

Example with Statement Reference Labels

The following example illustrates the use of statement reference labels.

It is identical to the previous program, except that labels are used for referencing instead of line numbers.

154 Copyright © Software AG 2003

Loop Processing

0010 ** Example Program 'LABELX02’
0020 DEFINE DATA LOCAL

0030 1 MYVIEW1 VIEW OF EMPLOYEES
0040 2 NAME

0050 2 FIRST-NAME

0060 2 PERSONNEL-ID

0070 1 MYVIEW2 VIEW OF VEHICLES
0080 2 PERSONNEL-ID

0090 2 MAKE

0100 END-DEFINE

0110 *

0120 LIMIT 15

0130 RD. READ MYVIEW1 BY NAME STARTING FROM 'JONES’

Example with Statement Reference Labels

0140 FD. FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (FD.)

0150 IF NO RECORDS FOUND
0160 MOVE ***NO CAR*** TO MAKE
0170 END-NOREC

0180 DISPLAY NOTITLE NAME (RD.) (IS=ON) FIRST-NAME (RD.) (IS=ON)

0190 MAKE (FD.)
0200 END-FIND /* (FD.)
0210 END-READ /* (RD.)
0220 END

Both programs produce the following output:

NAME FIRST-NAME MAKE
JONES VIRGINIA ***NO CAR***
MARSHA CHRYSLER
CHRYSLER
ROBERT GENERAL MOTORS
LILLY ***NO CAR***
EDWARD GENERAL MOTORS
MARTHA **NO CAR***
LAUREL GENERAL MOTORS
KEVIN DATSUN
GREGORY FORD
JOPER MANFRED ***NO CAR***
JOUSSELIN DANIEL RENAULT
JUBE GABRIEL **NO CAR***
JUNG ERNST ***NO CAR***
JUNKIN JEREMY ***NO CAR***
KAISER REINER ***NO CAR***

Copyright © Software AG 2003

155

Control Breaks Control Breaks

Control Breaks

This document describes how the execution of a statement can be made dependent on a control break, and how
control breaks can be used for the evaluation of Natural system functions.

The following topics are covered:

Use of Control Breaks

AT BREAK Statement

Automatic Break Processing

Example of System Functions with AT BREAK Statement

BEFORE BREAK PROCESSING Statement

Example of BEFORE BREAK PROCESSING Statement

User-Initiated Break Processing - PERFORM BREAK PROCESSING Statement
Example of PERFORM BREAK PROCESSING Statement

Use of Control Breaks

A control break occurs when the value of a control field changes.
The execution of statements can be made dependent on a control break.
A control break can also be used for the evaluation of Natural system functions.

System functions are discusse®lystem Variables and System Functidasr detailed descriptions of the
system functions available, refer to thatural System Functiordocumentation.

AT BREAK Statement

With the statemerAT BREAK, you specify the processing which is to be performed whenever a control break
occurs, that is, whenever the value of a control field which you specify with the AT BREAK statement changes.
As a control field, you can use a database field or a user-defined variable.

The following topics are covered below:

e Control Break Based on a Database Field
® Control Break Based on a User-Defined Variable
e Multiple Control Break Levels

Control Break Based on a Database Field
The field specified as control field in &T BREAK statement is usually a database field.

Example:

AT BREAK OF DEPT
statements
END-BREAK

156 Copyright © Software AG 2003

Control Breaks Control Break Based on a Database Field

In this example, the control field is the database field DEPT,; if the value of the field changes, for example,
FROM "SALEO1" to "SALEOQ2", thestatementspecified in the AT BREAK statement would be executed.

Instead of an entire field, you can also use only part of a field as a control field. With the-slash-notation
"/n/" you can determine that only the firspositions of a field are to be checked for a change in value.

Example:

AT BREAK OF DEPT /4/
statements
END-BREAK

In this example, the specifietiatementswould only be executed if the value of the first 4 positions of the field
DEPT changes, for example, FROM "SALE" to "TECH"; if, however, the field value changes from "SALEQ1"
to "SALEO02", this would be ignored and no AT BREAK processing performed.

Example of AT BREAK Statement using a Database Field:

** Example Program 'ATBREX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2CITY
2 COUNTRY
2 JOB-TITLE
2 SALARY (1:1)
END-DEFINE
*

READ (5) MYVIEW BY CITY WHERE COUNTRY = "USA’
DISPLAY CITY (AL=9) NAME 'POSITION’ JOB-TITLE 'SALARY’ SALARY (1)
AT BREAK OF CITY

WRITE / OLD(CITY) (EM=XAXAXAXAXAXAXAXAXAXAX)
5X 'AVERAGE:’ T*SALARY AVER(SALARY(1)) //
COUNT(SALARY(1)) 'RECORDS FOUND’ /
END-BREAK
AT END OF DATA
WRITE 'TOTAL (ALL RECORDS):’ T*SALARY(1) TOTAL(SALARY(1))
END-ENDDATA
END-READ
END

In the above program, the filIRITE statement is executed whenever the value of the field CITY changes.

In the AT BREAK statement, the system functicdkD, AVER andCOUNT are evaluated (and output in the
WRITE statement).

In the AT END OF DATA statement, the system functib®TAL is evaluated.

The program produces the following output:

Copyright © Software AG 2003 157

Control Break Based on a User-Defined Variable

Control Breaks

Page 1 97-08-19 18:17:27
CITY NAME POSITION SALARY

AIKEN SENKO PROGRAMMER 31500
AIKEN AVERAGE: 31500

1 RECORDS FOUND
ALBUQUERQ HAMMOND SECRETARY 22000
ALBUQUERQ ROLLING MANAGER 34000
ALBUQUERQ FREEMAN MANAGER 34000
ALBUQUERQ LINCOLN ANALYST 41000
ALBUQUERQUE AVERAGE: 32750

4 RECORDS FOUND
TOTAL (ALL RECORDS): 162500

Control Break Based on a User-Defined Variable

A user-defined variablean also be used as control field infANBREAK statement.

In the following program, the user-defined variable #LOCATION is used as control field.

** Example Program 'ATBREX02’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2CITY
2 COUNTRY
2 JOB-TITLE
2 SALARY (1:1)
1 #LOCATION (A20)
END-DEFINE
*

READ (5) MYVIEW BY CITY WHERE COUNTRY ='USA’
BEFORE BREAK PROCESSING
COMPRESS CITY "USA’ INTO #LOCATION
END-BEFORE

DISPLAY #LOCATION 'POSITION’ JOB-TITLE 'SALARY’ SALARY (1)

AT BREAK OF #LOCATION
SKIP 1
END-BREAK
END-READ
END

The above program produces the following output:

158

Copyright © Software AG 2003

Control Breaks Multiple Control Break Levels

Page 1 97-08-19 18:21:23
#LOCATION POSITION SALARY

AIKEN USA PROGRAMMER 31500

ALBUQUERQUE USA SECRETARY 22000

ALBUQUERQUE USA MANAGER 34000

ALBUQUERQUE USA MANAGER 34000

ALBUQUERQUE USA ANALYST 41000

Multiple Control Break Levels

As explainechbove the notation/h/" allows some portion of a field to be checked for a control break. It is
possible to combine several BREAK statements, using an entire field as control field for one break and part
of the same field as control field for another break.

In such a case, the break at the lower level (entire field) must be specified before the break at the higher level
(part of field); that is, in the first AT BREAK statement the entire field must be specified as control field, and in
the second one part of the field.

The following example program illustrates this, using the field DEPT as well as the first 4 positions of that field
(DEPT /4/).

** Example Program 'ATBREX03’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 DEPT
2 SALARY (1:1)
2 CURR-CODE (1:1)
END-DEFINE
READ MYVIEW BY DEPT STARTING FROM 'SALE40’ ENDING AT 'TECH10’
WHERE SALARY(1) GT 47000 AND CURR-CODE(1) ='USD’
AT BREAK OF DEPT
WRITE "*** LOWEST BREAK LEVEL ***'/
END-BREAK
AT BREAK OF DEPT /4/
WRITE "*** HIGHEST BREAK LEVEL ***'
END-BREAK
DISPLAY DEPT NAME 'POSITION’ JOB-TITLE
END-READ
END

Copyright © Software AG 2003 159

Multiple Control Break Levels Control Breaks

Page 1 97-08-19 18:24:16

DEPARTMENT NAME POSITION
CODE

TECHO05 HERZOG MANAGER

TECHO05 LAWLER MANAGER

TECHO05 MEYER MANAGER

*** | OWEST BREAK LEVEL ***

TECH10 DEKKER DBA
*** | OWEST BREAK LEVEL ***

*»** HIGHEST BREAK LEVEL ***

In the following program, one blank line is output whenever the value of the field DEPT changes; and whenever
the value in the first 4 positions of DEPT changes, a record count is carried out by evaluating the system function
COUNT.

** Example Program 'ATBREX04’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 DEPT
2 REDEFINE DEPT
3 #GENDEP (A4)
2 NAME
2 SALARY (1)
END-DEFINE
WRITE TITLE "** PERSONS WITH SALARY > 30000, SORTED BY DEPARTMENT **" /
LIMIT 9
READ MYVIEW BY DEPT FROM 'A’ WHERE SALARY(1) > 30000
DISPLAY 'DEPT DEPT NAME 'SALARY’ SALARY(1)
AT BREAK OF DEPT
SKIP 1
END-BREAK
AT BREAK OF DEPT /4/
WRITE COUNT(SALARY(1)) 'RECORDS FOUND IN:" OLD(#GENDEP) /
END-BREAK
END-READ
END

160 Copyright © Software AG 2003

Control Breaks

Automatic Break Processing

** PERSONS WITH SALARY > 30000, SORTED BY DEPARTMENT **

DEPT NAME SALARY
ADMAO1 JENSEN 180000
ADMAOQ1 PETERSEN 105000
ADMAQO1 MORTENSEN 320000
ADMAO1 MADSEN 149000
ADMAQ1 BUHL 642000
ADMAO2 HERMANSEN 391500
ADMAO2 PLOUG 162900
ADMAO02 HANSEN 234000

8 RECORDS FOUND IN: ADMA
COMPO1 HEURTEBISE 168800

1 RECORDS FOUND IN: COMP

Automatic Break Processing

Automatic break processing is in effect for a processing loop which contakiE BREAK statement. This

applies to the following statements:

FIND

READ
HISTOGRAM
SORT

READ WORK FILE

The value of the control field specified with tA& BREAK statement is checked only for records which satisfy

the selection criteria of both tNgITH clause and th&/HERE clause.

Natural system function®VER, MAX, MIN, etc.) are evaluated for each record after all statements within the
processing loop have been executed. System functions are not evaluated for any record which is rejected by

WHERE criteria.

The figure below illustrates the flow logic of automatic break processing.

Copyright © Software AG 2003

161

Example of System Functions with AT BREAK Statement Control Breaks

enter processing loop

v
no no leave processing looy
> R
Iy
> yes yes
v
execute NO
read record RECORDS FOUND

i

statements

yes

yes ye execute

5
- AT START OF DATA
statements

yes execute 75
»> BEFORE BREAK »>
statements A
yes
v

QL

yes

LA

enter procassing for current | execute

record and execute all statements
within processing loop

AT BREAK
A statements

execute
AT END OF DATA
statements

A

yes
yes exacule no
» AT BREAK »
statements A

Example of System Functions with AT BREAK Statement

The following example shows the use of Metural system function®LD, MIN, AVER, MAX, SUM and
COUNT in anAT BREAK statement (and of the system funcfid@TAL in anAT END OF DATA statement).

v

evaluate all system functions (MAX,
MIN, etc.) used within automatic AT
BREAK or AT END OF DATA (if used)

no yes

I

’4
L

** Example Program 'ATBREXO05’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2CITY
2 SALARY (1:1)
2 CURR-CODE (1:1)
END-DEFINE
*

LIMIT 3
READ MYVIEW BY CITY =SALT LAKE CITY’
DISPLAY NOTITLE CITY NAME 'SALARY’ SALARY(1) 'CURRENCY’ CURR-CODE(1)
AT BREAK OF CITY
WRITE / OLD(CITY) (EM=XAXAXAXAXAXAXAXAXAXAXAXAXAXAX)
31T’ - MINIMUM: MIN(SALARY(1)) CURR-CODE(1) /
31T’ - AVERAGE:’ AVER(SALARY(1)) CURR-CODE(1) /

162 Copyright © Software AG 2003

Control Breaks BEFORE BREAK PROCESSING Statement

31T ' - MAXIMUM:" MAX(SALARY(1)) CURR-CODE(1) /
31T'- SUM: SUM(SALARY(1)) CURR-CODE(1)/
33T COUNT(SALARY(1)) 'RECORDS FOUND’ /
END-BREAK
AT END OF DATA
WRITE 22T 'TOTAL (ALL RECORDS):’ T*SALARY
TOTAL(SALARY(1)) CURR-CODE(1)
END-ENDDATA

END-READ
END

CITY NAME SALARY CURRENCY
SALT LAKE CITY ANDERSON 50000 USD
SALT LAKE CITY SAMUELSON 24000 USD

SALT LAKE CITY -MINIMUM: 24000 USD
- AVERAGE: 37000 USD
- MAXIMUM: 50000 USD
- SUM: 74000 USD
2 RECORDS FOUND

SAN DIEGO GEE 60000 USD

SAN DIEGO - MINIMUM: 60000 USD
- AVERAGE: 60000 USD
- MAXIMUM: 60000 USD
- SUM: 60000 USD
1 RECORDS FOUND

TOTAL (ALL RECORDS): 134000 USD

BEFORE BREAK PROCESSING Statement

With thePERFORM BREAK PROCESSINGatement, you can specify statements that are to be executed
immediately before a control break; that is, before the value of the control field is checked, before the statements
specified in theAT BREAK block are executed, and before &tural system functiorgre evaluated.

Example of BEFORE BREAK PROCESSING Statement

** Example Program 'BEFORX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 BONUS (1:1,1:1)
1 #INCOME (P11)
END-DEFINE
*
LIMIT 5
READ MYVIEW BY NAME FROM 'B’
BEFORE BREAK PROCESSING
COMPUTE #INCOME = SALARY(1) + BONUS(1,1)

Copyright © Software AG 2003 163

User-Initiated Break Processing - PERFORM BREAK PROCESSING Statement Control Breaks

END-BEFORE
DISPLAY NOTITLE NAME FIRST-NAME (AL=10)
'ANNUAL/INCOME’ #INCOME
'SALARY’ SALARY(1) (LC==) / + BONUS’ BONUS(L,1) (IC=+)
AT BREAK OF #INCOME
WRITE T*#INCOME '-'(24)

END-BREAK

END-READ

END

NAME FIRST-NAME ANNUAL SALARY
INCOME + BONUS

BACHMANN HANS 297546 = 293546
+4000

BAECKER JOHANNES 420244 = 413644
+6600

BAECKER KARL 52650 = 48600
+4050

BAGAZJA MARJAN 152700 = 129700
+23000

BAILLET PATRICK 198500 = 188000
+10500

User-Initiated Break Processing - PERFORM BREAK
PROCESSING Statement

With automatic break processing, the statements specifiedAl &REAK block are executed whenever the
value of the specified control field changes - regardless of the position of the AT BREAK statement in the
processing loop.

With aPERFORM BREAK PROCESSINGatement, you can perform break processing at a specified position
in a processing loop: the PERFORM BREAK PROCESSING statement is executed when it is encountered in the
processing flow of the program.

Immediately after the PERFORM BREAK PROCESSING, you specify one or more AT BREAK statement
blocks:

PERFORM BREAK PROCESSING
AT BREAK OF field1
statements
END-BREAK
AT BREAK OF field2
statements
END-BREAK

When a PERFORM BREAK PROCESSING is executed, Natural checks if a break has occurred; that is, if the
value of the specified control field has changed; and if it has, the specified statements are executed.

164 Copyright © Software AG 2003

Control Breaks Example of PERFORM BREAK PROCESSING Statement

With PERFORM BREAK PROCESSING, system functions are evallmdeNatural checks if a break has
occurred.

The following figure illustrates the flow logic of user-initiated break processing:

v

PERFORM BREAK
PROCESSING
is encountered

!

System functions
are evaluated

Exzecute AT BREAK
statements in
hierarchial order

Example of PERFORM BREAK PROCESSING
Statement

** Example Program 'PERFBX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 DEPT
2 SALARY (1:1)
1#CNTL (N2)
END-DEFINE
*
LIMIT 7
READ MYVIEW BY DEPT
AT BREAK OF DEPT [* <- automatic break processing
SKIP 1

Copyright © Software AG 2003 165

Further Example of AT BREAK Statement Control Breaks

WRITE 'SUMMARY FOR ALL SALARIES ’
'SUM: SUM(SALARY(1))
"TOTAL: TOTAL(SALARY(1))
ADD 1 TO #CNTL
END-BREAK
IF SALARY (1) GREATER THAN 100000 OR BREAK #CNTL
PERFORM BREAK PROCESSING /* <- user-initiated break processing
AT BREAK OF #CNTL
WRITE 'SUMMARY FOR SALARY GREATER 100000’
'SUM:" SUM(SALARY (1))
'TOTAL: TOTAL(SALARY(1))
END-BREAK
END-IF
IF SALARY (1) GREATER THAN 150000 OR BREAK #CNTL
PERFORM BREAK PROCESSING /* <- user-initiated break processing
AT BREAK OF #CNTL
WRITE 'SUMMARY FOR SALARY GREATER 150000’
'SUM:" SUM(SALARY (1))
'TOTAL: TOTAL(SALARY(1))
END-BREAK
END-IF
DISPLAY NAME DEPT SALARY(1)
END-READ
END

Page 1 97-08-18 17:11:11

NAME DEPARTMENT ANNUAL
CODE SALARY

JENSEN ADMAO1 180000

PETERSEN ADMAO1 105000

MORTENSEN ADMAO1 320000

MADSEN ADMAO1 149000

BUHL ADMAO1 642000

SUMMARY FOR ALL SALARIES SUM: 1396000 TOTAL: 1396000

SUMMARY FOR SALARY GREATER 100000 SUM: 1396000 TOTAL: 1396000
SUMMARY FOR SALARY GREATER 150000 SUM: 1142000 TOTAL: 1142000

HERMANSEN ADMAO2 391500
PLOUG ADMAQ2 162900
SUMMARY FOR ALL SALARIES SUM: 554400 TOTAL: 1950400

SUMMARY FOR SALARY GREATER 100000 SUM: 554400 TOTAL: 1950400
SUMMARY FOR SALARY GREATER 150000 SUM: 554400 TOTAL: 1696400

Further Example of AT BREAK Statement

See the following example program in library SYSEXPG:

e ATBREXO06

166 Copyright © Software AG 2003

Data Computation Data Computation

Data Computation

This document discusses arithmetic statements that are used for computing data and statements that are used to
transfer the value of an operand into one or more fields.

The following topics are covered:

Statements Used for Computing Data or Transferring Values
COMPUTE Statement

Statements MOVE and COMPUTE

Statements ADD, SUBTRACT, MULTIPLY and DIVIDE

Example of MOVE, SUBTRACT and COMPUTE Statements
COMPRESS Statement

Example of COMPRESS and MOVE Statements

Example of COMPRESS Statement

Mathematical Functions

Further Examples of COMPUTE, MOVE and COMPRESS Statements

Statements Used for Computing Data or Transferring
Values

This document discusses the arithmetic statements:

COMPUTE
ADD
SUBTRACT
MULTIPLY
DIVIDE

In addition, the following statements are discussed which are used to transfer the value of an operand into one or
more fields:

e MOVE
® COMPRESS

Format of Fields

For optimum processingser-defined variablassed in arithmetic statements should be defined with format P
(packed numeric).

COMPUTE Statement

The COMPUTESstatement is used to perform arithmetic operations. The following connecting operators are
available:

Copyright © Software AG 2003 167

Statements MOVE and COMPUTE Data Computation

Exponentiatior **

Multiplication *

Division /
Addition +
Subtraction -

Parentheses may be used to indicate logical grouping.

Example 1:
COMPUTE LEAVE-DUE = LEAVE-DUE * 1.1

In this example, the value of the field LEAVE-DUE is multiplied by 1.1, and the result is placed in the field
LEAVE-DUE.

Example 2:
COMPUTE #A = SQRT (#B)

In this example, the square root of the value of the field #B is evaluated, and the result is assigned to the field
#A.

"SQRT" is a mathematical function supported in the following arithmetic statements:

COMPUTE
ADD
SUBTRACT
MULTIPLY
DIVIDE

For an overview of mathematical functions, Mhematical Functionkelow.
Example 3:
COMPUTE #INCOME = BONUS (1,1) + SALARY (1)

In this example, the first bonus of the current year and the current salary amount are added and assigned to the
field #INCOME.

Statements MOVE and COMPUTE

The statement8IOVE andCOMPUTEcan be used to transfer the value of an operand into one or more fields.
The operand may be a constant such as a text item or a number, a database field, a user-defined variable, a
system variable, or, in certain cases, a system function.

The difference between the two statements is that in the MOVE statement the value to be moved is specified on
the left; in the COMPUTE statement the value to be assigned is specified on the right, as shown in the following
examples.

Examples:

MOVE NAME TO #LAST-NAME
COMPUTE #LAST-NAME = NAME

168 Copyright © Software AG 2003

Data Computation Statements ADD, SUBTRACT, MULTIPLY and DIVIDE

Statements ADD, SUBTRACT, MULTIPLY and DIVIDE

The ADD, SUBTRACT, MULTIPLY andDIVIDE statements are used to perform arithmetic operations.
Examples:

ADD +5 -2 -1 GIVING #A
SUBTRACT 6 FROM 11 GIVING #B
MULTIPLY 3 BY 4 GIVING #C
DIVIDE 3 INTO #D GIVING #E

All four statements haveROUNDED option, which you can use if you wish the result of the operation to be
rounded.

For rules on rounding, sé&aules for Arithmetic Assignment

TheNatural Statements documentatfmovides more detailed information on these statements.

Example of MOVE, SUBTRACT and COMPUTE
Statements

The following program demonstrates the usas#r-defined variablda arithmetic statements. It calculates the
ages and wages of three employees and outputs these.

** Example Program 'COMPUXO01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 BIRTH
2 JOB-TITLE
2 SALARY (1:1)
2 BONUS (1:1,1:1)
1 #DATE (N8)
1 REDEFINE #DATE
2 #YEAR (N4)
2 #MONTH (N2)
2 #DAY (N2)
1#BIRTH-YEAR (A4)
1 REDEFINE #BIRTH-YEAR
2 #BIRTH-YEAR-N (N4)

1 #AGE (N3)

1 #INCOME (P9)
END-DEFINE

*

MOVE *DATN TO #DATE
*

READ (3) MYVIEW BY NAME STARTING FROM 'JONES’
MOVE EDITED BIRTH (EM=YYYY) TO #BIRTH-YEAR
SUBTRACT #BIRTH-YEAR-N FROM #YEAR GIVING #AGE
COMPUTE #INCOME = BONUS (1:1,1:1) + SALARY (1:1)
DISPLAY NAME 'POSITION’ JOB-TITLE #AGE #INCOME

END-READ

END

Copyright © Software AG 2003 169

COMPRESS Statement Data Computation

Page 1 99-01-22 12:42:50
NAME POSITION #AGE #INCOME
JONES MANAGER 58 55000
JONES DIRECTOR 53 50000
JONES PROGRAMMER 43 31000

COMPRESS Statement

The COMPRESSstatement is used to transfer (combine) the contents of two or more operands into a single
alphanumeric field.

Leading zeros in a numeric field and trailing blanks in an alphanumeric field are suppressed before the field
value is moved to the receiving field.

By default, the transferred values are separated from one another by a single blank in the receiving field. Other
separating possibilities are described inNfagural Statements documentation

Example:

COMPRESS 'NAME:" FIRST-NAME #LAST-NAME INTO #FULLNAME

In this example, a text constant (NAME:"), a database field (FIRST-NAME) and a user-defined variable
(#LAST-NAME) are combined into one user-defined variable (#FULLNAME) using a COMPRESS statement.

For further information on the COMPRESS statement, please refer @O RES Sstatement description in
the Natural Statements documentation.

Example of COMPRESS and MOVE Statements

** Example Program 'ComPRX01’
DEFINE DATA LOCAL
1 MYVIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 MIDDLE-I
1 #LAST-NAME (A15)
1 #FULL-NAME (A30)
END-DEFINE
*
READ (3) MYVIEW BY NAME STARTING FROM 'JONES’
MOVE NAME TO #LAST-NAME
COMPRESS 'NAME:’ FIRST-NAME MIDDLE-I #LAST-NAME INTO #FULL-NAME
DISPLAY #FULL-NAME (UC==) FIRST-NAME 'I' MIDDLE-I (AL=1) NAME
END-READ
END

The above program illustrates the use of the staterditE andCOMPRESSNotice the output format of the
compressed field:

170 Copyright © Software AG 2003

Data Computation Example of COMPRESS Statement

Page 1 97-08-18 17:47:03
#FULL-NAME FIRST-NAME | NAME
NAME: VIRGINIA J JONES VIRGINIA J JONES
NAME: MARSHA JONES MARSHA JONES
NAME: ROBERT B JONES ROBERT B JONES

In multiple-line displays, it may be useful to combine fields/textuiser-defined variabldsy using a
COMPRESSstatement.

Example of COMPRESS Statement

In the following program, threeser-defined variablesre used: #FULLSAL, #FULLNAME, and #FULLCITY.
#FULLSAL, for example, contains the text 'SALARY:’ and the database fields SALARY and CURR-CODE.
The WRITE statement then references only the compressed variables.

** Example Program 'COMPRX02’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 CURR-CODE (1:1)
2 CITY
2 ADDRESS-LINE (1:1)
2ZIP
1 #FULLSAL (A25)
1 #FULLNAME (A25)
1 #FULLCITY (A25)
END-DEFINE
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK’
COMPRESS 'SALARY:’ CURR-CODE(1) SALARY(1) INTO #FULLSAL
COMPRESS FIRST-NAME NAME INTO #FULLNAME
COMPRESS ZIP CITY INTO #FULLCITY
DISPLAY 'NAME AND ADDRESS’ NAME (EM=XAXAXAXAXAXAXAXAXAXAXAX)
WRITE 1/5 #FULLNAME 1/37 #FULLSAL
2/5 ADDRESS-LINE (1)
3/5 #FULLCITY
SKIP 1
END-READ
END

Copyright © Software AG 2003 171

Mathematical Functions Data Computation

Page 1 97-08-19 18:01:17
NAME AND ADDRESS

RUBIN
SYLVIA RUBIN SALARY: USD 17000

2003 SARAZEN PLACE
10036 NEW YORK

WALLACE
MARY WALLACE SALARY: USD 38000
12248 LAUREL GLADE C
10036 NEW YORK

KELLOGG
HENRIETTA KELLOGG SALARY: USD 52000
1001 JEFF RYAN DR.
19711 NEWARK

Mathematical Functions

The following Natural mathematical functions are supported in arithmetic processing staté&bénts (
COMPUTE DIVIDE, SUBTRACT, MULTIPLY).

Mathematical Function Natural System Function
Absolute value ofield. ABS(field)
Arc tangent ofield. ATN(field)
Cosine offield. COSfield)
Exponential ofield. EXP(field)
Fractional part ofield. FRAC(field)
Integer part ofield. INT(field)
Natural logarithm ofield. LOG(field)
Sign offield. SGNffield)
Sine offield. SIN(field)
Square root ofield. SQRTield)
Tangent ofield. TAN(field)

Numeric value of an alphanumefield. VAL(field)

See also thdlatural System Functions documentationa detailed explanation of each mathematical function
and for platform-specific information.

172 Copyright © Software AG 2003

Data Computation Further Examples of COMPUTE, MOVE and COMPRESS Statements

Further Examples of COMPUTE, MOVE and
COMPRESS Statements

See the following example programs in library SYSEXPG:

e WRITEX11
e |FX03
e COMPRXO03

Copyright © Software AG 2003 173

System Variables and System Functions System Variables and System Functions

System Variables and System Functions

This document describes the purpose of Natural system variables and Natural system functions and how they are
used in Natural programs.

The following topics are covered:

System Variables

System Functions

Example of System Variables and System Functions
Further Examples of System Variables

Further Examples of System Functions

System Variables

Natural system variables provide variable information, for example, about the current Natural session:

the current library,

the user and terminal identification;
the current status of a loop processing;
the current report processing status;
the current date and time.

The information contained in a system variable may be used in Natural programs by specifying the appropriate
system variables. For example, date and time system variables may be speciid@RhAY, WRITE,
PRINT, MOVE or COMPUTESstatement.

The names of all system variables begin with an asterisk (*). The typical use of system variables is illustrated in
the example programs below.

The Natural system variables are grouped as follows:

® Application Related System Variables

Date and Time System Variables

Input/Ouput Related System Variables

Natural Environment Related System Variables
System Environment Related System Variables
XML Related System Variables

For detailed descriptions of all system variables, see in the N&ystm Variableseference documentation.

System Functions

Natural system functions comprise a set of statistical and mathematical functions that can be applied to the data
after a record has been processed, but before break processing occurs.

System functions may be specified iDESPLAY, WRITE, PRINT, MOVE or COMPUTEstatement that is
used in conjunction with aAT END OF PAGE AT END OF DATA or AT BREAK statement.

In the case of an AT END OF PAGE statement, the corresponding DISPLAY statement must indkidEthe
SYSTEM FUNCTIONSclause (as shown in the exampédow).

174 Copyright © Software AG 2003

System Variables and System Functions Example of System Variables and System Functions

The following functional groups of system functions exist:

® System Functions for Use in Processing Loops
e Mathematical Functions
® Miscellaneous Functions

For detailed information on all system functions availableNsgaral System Functions
See alsdJsing System Functions in Processing Lompthe System Functions reference documentation.

The typical use of system functions is explained in the example programs given below and in the examples
contained in library SYSEXPG.

Example of System Variables and System Functions

The following example program illustrates the use of system variables and system functions:

** Example Program 'SYSVAXO01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2CITY
2 NAME
2 JOB-TITLE
2 INCOME (1:1)
3 CURR-CODE
3 SALARY
3 BONUS (1:1)
END-DEFINE
*
WRITE TITLE 'EMPLOYEE SALARY REPORT AS OF *DAT4E /
READ (3) MYVIEW BY CITY STARTING FROM 'E’
DISPLAY GIVE SYSTEM FUNCTIONS
NAME (AL=15) JOB-TITLE (AL=15) INCOME (1:1)
AT START OF DATA
WRITE 'REPORT CREATED AT:’ *TIME '"HOURS’ /
END-START
AT END OF DATA
WRITE / 'LAST PERSON SELECTED:" OLD (NAME) /
END-ENDDATA
END-READ
AT END OF PAGE
WRITE 'AVERAGE SALARY: AVER(SALARY(1))
END-ENDPAGE
END

Explanation:

® The system variabEDATE is output with thaVRITE TITLE statement.

® The system variabETIME is output with théAT START OF DATA statement.
® The system functio®LD is used in théT END OF DATA statement.

® The system functioAVER is used in thT END OF PAGEstatement.

Note how the system variables and system function are displayed:

Copyright © Software AG 2003 175

Further Examples of System Variables System Variables and System Functions

EMPLOYEE SALARY REPORT AS OF 18/01/1999

NAME CURRENT INCOME
POSITION
CURRENCY ANNUAL BONUS
CODE SALARY

REPORT CREATED AT: 11:51:29.3 HOURS

DUYVERMAN PROGRAMMER USD 34000 0
PRATT SALES PERSON USD 38000 9000
MARKUSH TRAINEE usD 22000 0

LAST PERSON SELECTED: MARKUSH

AVERAGE SALARY: 31333

Further Examples of System Variables

See the following example programs in library SYSEXPG:

e EDITMXO05
e READXO04
e WTITLXO01

Further Examples of System Functions

See the following example programs in library SYSEXPG:

e ATBREXO06
e ATENPXO1

176 Copyright © Software AG 2003

Stack Stack

Stack

The Natural stack is a kind of "intermediate storage" in which you can store Natural commands, user-defined
commands, and input data to be used b\NBUT statement.

The following topics are covered:

Use of Natural Stack
Stack Processing
Placing Data in the Stack
Clearing the Stack

Use of Natural Stack

In the stack you can store a series of functions which are frequently executed one after the other, such as a series
of logon commands.

The data/commands stored in the stack are "stacked" on top of one another. You can decide whether to put them
on top or at the bottom of the stack. The data/command in the stack can only be processed in the order in which
they are stacked, beginning from the top of the stack.

In a program, you may reference the system varfdTA to determine the content of the stack (see the
System Variables documentatifor further information).

The total size of the stack is defined by the remaining portion iIE$&E buffer after allocation for the global
data area and the program source area.

Stack Processing

The processing of the commands/data stored in the stack differs depending on the function being performed.

If a command is expected, that is, the NEXT prompt is about to be displayed, Natural first checks if a command
is on the top of the stack. If there is, the NEXT prompt is suppressed and the command is read and deleted from
the stack; the command is then executed as if it had been entered manually in response to the NEXT prompt.

If an INPUT statement containing input fields is being executed, Natural first checks if there are any input data
on the top of the stack. If there are, these data are passed to the INPUT statesedintii@n modg; the data

read from the stack must be format-compatible with the variables in the INPUT statement; the data are then
deleted from the stack.

If an INPUT statement was executed using data from the stack, and this INPUT statement is re-executed via a
REINPUT statement, the INPUT statement screen will be re-executed displaying the same data from the stack as
when it was executed originally. With the REINPUT statement, no further data are read from the stack.

When a Natural program terminates normally, the stack is flushed beginning from the top until either a command
is on the top of the stack or the stack is cleared. When a Natural program is terminated via the terminal command
"%%'" or with an error, the stack is cleared entirely.

Copyright © Software AG 2003 177

Placing Data on the Stack Stack

Placing Data on the Stack

The following methods can be used to place data/commands on the stack:

® STACK Parameter
® STACK Statement
e FETCH and RUN Statements

STACK Parameter

The Natural profile paramet&TACK may be used to place data/commands on the stack. The STACK
parameter, which is described in the Natural Parameter Reference documentation, can be specified by the
Natural administrator in the Natural parameter module at the installation of Natural; or you can specify it as a
dynamic parameter when you invoke Natural.

When data/commands are to be placed on the stack via the STACK parameter, multiple commands must be
separated from one another by a semicolon (;). If a command is to be passed within a sequence of data or
command elements, it must be preceded by a semicolon.

Data for multiplelNPUT statements must be separated from one another by a colon (). Data that are to be read
by a separate INPUT statement must be preceded by a colon. If a command is to be stacked which requires
parameters, no colon is to be placed between the command and the parameters.

Semicolon and colon must not be used within the input data themselves as they will be interpreted as separation
characters.

STACK Statement

The STACK statement can be used within a program to place data/commands in the stack. The data elements
specified in one STACK statement will be used for IMRUT statement, which means that if data for multiple
INPUT statements are to be placed on the stack, multiple STACK statements must be used.

Data may be placed on the stack either unformatted or formatted:

e If unformatted data are read from the stack, the data string is interpreted in delimiter mode and the
characters specified with the session parambte(Bput Assignment character) atal (Input Delimiter
character) are processed as control charactekeywrordassignment and data separation.

e If formatted data are placed on the stack, each content of a field will be separated and passed to one input
field in the corresponding INPUT statement.

See the Natural Statements documentation for further information &@T&EK statement

FETCH and RUN Statements

The execution of RETCH or RUN statement that contains parameters to be passed to the invoked program will
result in these parameters being placed on top of the stack.

Clearing the Stack

The contents of the stack can be deleted with the RELEASE statement. See the Natural Statements
documentation for details on tRELEASE statement

Note:
When a Natural program is terminated via the terminal comnfa''br with an error, the stack is cleared
entirely.

178 Copyright © Software AG 2003

Processing of Date Information Processing of Date Information

Processing of Date Information

This section covers various aspects concerning the handling of date information in Natural applications.
The following topics are covered:

Edit Masks for Date Fields and Date System Variables

Default Edit Mask for Date - DTFORM Parameter

Date Format for Alphanumeric Representation - DF Parameter
Date Format for Output - DFOUT Parameter

Date Format for Stack - DFSTACK Parameter

Year Sliding Window - YSLW Parameter

Combinations of DFSTACK and YSLW

Date Format for Default Page Title - DFTITLE Parameter

Edit Masks for Date Fields and Date System Variables

If you wish the value of a date field to be output in a specific representation, you usually spedifynaaskfor
the field. With an edit mask, you determine character by character what the output is to look like.

If you wish to use the current date in a specific representation, you need not define a date field and specify an
edit mask for it; instead you can simply usgate system variabléatural provides various date system

variables, which contain the current date in different representations. Some of these representations contain a
2-digit year component, some a 4-digit year component.

For more information and a list of aate system variablgesee th&System Variables documentation

Default Edit Mask for Date - DTFORM Parameter

The profile parametddTFORM determines the default format used for dates as part of the default title on
Natural reports, for date constants and for date input.

This date format determines the sequence of the day, month and year components of a date, as well as the
delimiter characters to be used between these components.

Possible DTFORM settings are:

Setting Date Format* | Example

DTFORM=I |yyyy-mm-dd |1997-12-31
DTFORM=G |dd.mm.yyyy |31.12.1997
DTFORM=E |dd/mm/yyyy |31/12/1997
DTFORM=U | mm/dd/yyyy |12/31/1997

* dd = day,mm= month,yyyy= year.

The DTFORM parameter can be set in the Natural parameter module/file or dynamically when Natural is
invoked. By default, DTFORM=I applies.

Copyright © Software AG 2003 179

Date Format for Alphanumeric Representation - DF Parameter Processing of Date Information

Date Format for Alphanumeric Representation - DF
Parameter
The session parameteF only applies to date fields for which no edit mask is specified.

If an edit mask is specified, the representation of the field value is determined by the edit mask. If no edit mask is
specified, the representation of the field value is determined by the session paltdmeteombination with the
profile parameteDTFORM.

With the DF parameter, you can choose one of the following date representations:

DF=S | 8-byte representation with 2-digit year component and delimiggrs(n-dJl.

DF=l | 8-byte representation with 4-digit year component without delimiygms/tnmdyl

DF=L | 10-byte representation with 4-digit year component and delimitgyy-mm-djl

For each representation, the sequence of the day, month and year components, and the delimiter characters used,
are determined by tHeTFORM parameter.

By default, DF=S applies (except for INPUT statements; see below).
The session parameteF is evaluated at compilation.
It can be specified with the following statements:

e FORMAT,
o INPUT, DISPLAY, WRITE andPRINT (at statement and field level),
® MOVE, COMPRESSSTACK, RUN andFETCH (at field level).

When specified in one of these statementspPtR@arameter applies to the following:

Statement: Effect of DF parameter:

DISPLAY, When the value of a date variable is output with one of these statements, the value is

WRITE, converted to an alphanumeric representation before it is output. The DF parameter defermines
PRINT which representation is used.

MOVE, When the value of a date variable is transferred to an alphanumeric field with a MOVH or

COMPRESS |COMPRESS statement, the value is converted to an alphanumeric representation befpre it is
transferred. The DF parameter determines which representation is used.

STACK, RUN, |When the value of a date variable is placed on the stack, it is converted to alphanumefic
FETCH representation before it is placed on the stack. The DF parameter determines which
representation is used.

The same applies when a date variable is specified as a parameter in a FETCH or RUN

statement (as these parameters are also passed via the stack).

INPUT When a data variable is used in an INPUT statement, the DF parameter determines how a
value must be entered in the field.
However, when a date variable for whioh DF parameter is specified is used in an INPUT
statement, the date can be entered either with a 2-digit year component and delimiterg or with
a 4-digit year component and no delimiters. In this case, too, the sequence of the day,| month
and year components, and the delimiter characters to be used, are determined by the
DTFORM parameter.

180 Copyright © Software AG 2003

Processing of Date Information Examples of DF Parameter with WRITE Statements

Note:
With DF=S, only 2 digits are provided for the year information; this means that if a date value contained the

century, this information would be lost during the conversion. To retain the century information, you set DF=I or
DF=L.

Examples of DF Parameter with WRITE Statements

These examples assume tBaiFORM=G applies.

I* DF=S (default)
WRITE *DATX /* Output has this format: dd.mm.yy
END

FORMAT DF=I
WRITE *DATX /* Output has this format: ddmmyyyy
END

FORMAT DF=L

WRITE *DATX /* Output has this format: dd.mm.yyyy
END

Example of DF Parameter with MOVE Statement

This example assumes thatFORM=E applies.

DEFINE DATA LOCAL
1 #DATE (D) INIT <D’31/12/1997’>

1 #ALPHA (A10)
END-DEFINE
MOVE #DATE TO #ALPHA /* Result: #ALPHA contains 31/12/97
MOVE #DATE (DF=I) TO #ALPHA /* Result: #ALPHA contains 31121997
MOVE #DATE (DF=L) TO #ALPHA /* Result: #ALPHA contains 31/12/1997

Example of DF Parameter with STACK Statement

This example assumes thatFORM=I applies.

DEFINE DATA LOCAL
1 #DATE (D) INIT <D'1997-12-31">
1 #ALPHA1(A10)

1 #ALPHA2(A10)
1 #ALPHA3(A10)
END-DEFINE

STACK TOP DATA #DATE (DF=S) #DATE (DF=l) #DATE (DF=L)

INPUT #ALPHAL #ALPHA2 #ALPHAS

/* Result: #ALPHAL contains 97-12-31
1* #ALPHAZ2 contains 19971231
1* #ALPHAS3 contains 1997-12-31

Copyright © Software AG 2003 181

Date Format for Output - DFOUT Parameter Processing of Date Information

Example of DF Parameter with INPUT Statement

This example assumes thatFORM=I applies.

DEFINE DATA LOCAL
1 #DATEL1 (D)
1 #DATE2 (D)
1 #DATE3 (D)
1 #DATE4 (D)

END-DEFINE
INPUT #DATEL (DF=S) /* Input must have this format: yy-mm-dd
#DATE2 (DF=I) /* Input must have this format: yyyymmdd
#DATE3 (DF=L) /* Input must have this format: yyyy-mm-dd
#DATE4 /* Input must have this format: yy-mm-dd or yyyymmdd

Date Format for Output - DFOUT Parameter

The session/profile parame@FOUT only applies to date fields INPUT, DISPLAY, WRITE andPRINT
statements for which no edit mask is specified, and for whidbmparameter applies.

For date fields which are displayed by INPUT, DISPLAY, PRINT and WRITE statements and for which neither
an edit mask is specified nor a DF parameter applies, the profile/session parameter DFOUT determines the
format in which the field values are displayed.

Possible DFOUT settings are:

DFOUT=S| Date variables are displayed with a 2-digit year component, and delimiters as determined by the
DTFORM parametenfy-mm-dgl.

DFOUT=I | Date variables are displayed with a 4-digit year component and no delimjtgysndil

By default, DFOUT=S applies. For either DFOUT setting, the sequence of the day, month and year components
in the date values is determined by the DTFORM parameter.

The lengths of the date fields are not affected by the DFOUT setting, as either date value representation fits into
an 8-byte field.

The DFOUT parameter can be set in the Natural parameter module/file, dynamically when Natural is invoked, or
with the system command GLOBALS. It is evaluated at runtime.

Example:
This example assumes thatFORM=I applies.

DEFINE DATA LOCAL
1 #DATE (D) INIT <D'1997-12-31">

END-DEFINE
WRITE #DATE [* Output if DFOUT=S is set ...: 97-12-31
/* Output if DFOUT=l is set ... 19971231

WRITE #DATE (DF=L) /* Output (regardless of DFOUT): 1997-12-31

182 Copyright © Software AG 2003

Processing of Date Information Date Format for Stack - DFSTACK Parameter

Date Format for Stack - DFSTACK Parameter

The session/profile paramef@FSTACK only applies to date fields usedSTACK, FETCHandRUN
statements for which ndbF parameter has been specified.

The DFSTACK parameter determines the format in which the values of date variables are placed on the stack via
a STACK, RUN or FETCH statement.

Possible DFSTACK settings are:

DFSTACK=S | Date variables are placed on the stack with a 2-digit year component, and delimiters ag
determined by the profile DTFORM parametgy-(m-dd.

DFSTACK=C | Same as DFSTACK=S. However, a change in the century will be intercepted at runtimag.

DFSTACK=Il |Date variables are placed on the stack with a 4-digit year component and no delimiters
(yyyymmdyl

By default, DFSTACK=S applies. DFSTACK=S means that when a date value is placed on the stack, it is placed
there without the century information (which is lost). When the value is then read from the stack and placed into
another date variable, the century is either assumed to be the current one or determined by the setting of the
YSLW parameter (seleelow). This might lead to the century being different from that of the original date value;
however, Natural would not issue any error in this case.

DFSTACK=C works the same as DFSTACK=S in that a date value is placed on the stack without the century
information. However, if the value is read from the stack and the resulting century is different from that of the
original date value (either because of the YSLW parameter, or the original century not being the current one),
Natural issues a runtime error.

Note:
This runtime error is already issued at the time when the value is placed on the stack.

DFSTACK-=I allows you to place a date value on the stack in a length of 8 bytes without losing the century
information.

The DFSTACK parameter can be set in the Natural parameter module/file, dynamically when Natural is
invoked, or with the system command GLOBALS. It is evaluated at runtime.

Example:
This example assumes tHaTFORM=I andYSLW=0 apply.
DEFINE DATA LOCAL
1 #DATE (D) INIT <D'1997-12-31">
1 #ALPHA1(A8)
1 #ALPHA2(A10)
END-DEFINE
STACK TOP DATA #DATE #DATE (DF=L)

INPUT #ALPHA1 #ALPHA2

/* Result if DFSTACK=S or =C is set: #ALPHA1 contains 97-12-31
/* Result if DFSTACK=l is set #ALPHAL1 contains 19971231

/* Result (regardless of DFSTACK) .: #ALPHA2 contains 1997-12-31

Copyright © Software AG 2003 183

Year Sliding Window - YSLW Parameter Processing of Date Information

Year Sliding Window - YSLW Parameter

The profile paramete¥SLW allows you determine the century of a 2-digit year value.

The YSLW parameter can be set in the Natural parameter moduleffile or dynamically when Natural is invoked. It
is evaluated at runtime when an alphanumeric date value with a 2-digit year component is moved into a date
variable. This applies to data values which are:

e used with thenathematical functioWAL (field),

e used with the IS(D) option in a logical condition,

e read from thestackas input data, or

® entered in an input field as input data.

The YSLW parameter determines the range of years covered by a so-called "year sliding window". The
sliding-window mechanism assumes a date with a 2-digit year to be within a "window" of 100 years. Within
these 100 years, every 2-digit year value can be uniquely related to a specific century.

With the YSLW parameter, you determine how many years in the past that 100-year range is to begin: The
YSLW value is subtracted from the current year to determine the first year of the window range.

Possible values of the YSLW parameter are 0 to 99. The default value is YSLW=0, which means that no
sliding-window mechanism is used; that is, a date with a 2-digit year is assumed to be in the current century.

Example 1:

If the current year is 1997 and you specify YSLW=40, the sliding window will cover the years 1957 to 2056. A
2-digit year valuean from 57 to 99 is interpreted accordingly asid,9vhile a 2-digit year valuen from 00 to
56 is interpreted as 20.

DTFORM=G (date format is: day.month. year)
Y3LW=40 [(100-vear range of window begins 40 years befare current year)
Date value: 18.01.76 Date value: 24.12.19
interpreted interpreted
as as
1976 2019
1957 1997 2056
current
year

184 Copyright © Software AG 2003

Processing of Date Information Combinations of DFSTACK and YSLW

Example 2:

If the current year is 1997 and you specify YSLW=20, the sliding window will cover the years 1977 to 2076. A
2-digit year valuenn from 77 to 99 is interpreted accordingly asid9vhile a 2-digit year valuen from 00 to
76 is interpreted as 20.

DTFORM=G (date format is: day. month year)
YSLW=20 (100-year range of window begins 20 years before current year)
Date value: 24.12.19 Date value: 18.01.76
interpreted interpreted
as as
2019 2076
1977 1997 2076
current
year

Combinations of DFSTACK and YSLW

The following examples illustrate the effects of using various combinations of the pardbi®dACK and
YSLW.

Note:
All these examples assume tRtFORM=I applies.

Example 1:

This example assumes the current year to be 1997, and that the parameteDseRiASK=S (default) and
YSLW=20 apply.
DEFINE DATA LOCAL
1 #DATE1 (D) INIT <D’ 1956-12-31 '>
1 #DATE2 (D)
END-DEFINE
STACK TOP DATA #DATEL1 /* century information is lost (year 56 is stacked)
INPUT #DATE2 [* year sliding window determines 56 to be 2056

/* Result: #DATE2 contains 2056-12-31

Copyright © Software AG 2003 185

Combinations of DFSTACK and YSLW Processing of Date Information

In this case, the year sliding window is not set appropriately, so that the century information is (inadvertently)
changed.

Example 2:

This example assumes the current year to be 1997, and that the parameteDdeRirASK=S (default) and
YSLW=50 apply.

DEFINE DATA LOCAL
1 #DATE1L (D) INIT <D’ 1956-12-31 ">
1 #DATE2 (D)
END-DEFINE
STACK TOP DATA #DATEL /* century information is lost (year 56 is stacked)
INPUT #DATE2 /* year sliding window determines 56 to be 1956
/* Result: #DATE2 contains 1956-12-31

In this case, the year sliding window is set appropriately, so that the original century information is correctly
restored.

Example 3:

This example assumes the current year to be 1997, and that the parameteDde&imySK=Cand YSLW=0
(default) apply.

DEFINE DATA LOCAL
1 #DATE1 (D) INIT <D’ 2056-12-31 >
1 #DATE2 (D)
END-DEFINE
STACK TOP DATA #DATEL /* century information is lost (year 56 is stacked)
INPUT #DATE2 /* 56 is assumed to be in current century -> 1956
/* Result: RUNTIME ERRORUNINTENDED CENTURY CHANGE)

In this case, the century information is (inadvertently) changed. However, this change is intercepted by the
DFSTACK=C setting.

Example 4:

This example assumes the current year to be 1997, and that the parameteDse&iSK=Cand YSLW=20
(default) apply

DEFINE DATA LOCAL
1 #DATE1 (D) INIT <D’ 1956-12-31 >
1 #DATE2 (D)
END-DEFINE
STACK TOP DATA #DATEL1 /* century information is lost (year 56 is stacked)
INPUT #DATE2 [* year sliding window determines 56 to be 2056
/* Result: RUNTIME ERRORUNINTENDED CENTURY CHANGE)

In this case, the century information is changed due to the year sliding window. However, this change is
intercepted by the DFSTACK=C setting.

186 Copyright © Software AG 2003

Processing of Date Information Date Format for Default Page Title - DFTITLE Parameter

Date Format for Default Page Title - DFTITLE Parameter

The session/profile parame@FTITLE determines the format of the date in a defpatie title(as output with a
DISPLAY, WRITE or PRINT statement).

DFTITLE=S |The date is output with a 2-digit year component and delimigrsm-dJl.

DFTITLE=L |The date is output with a 4-digit year component and delimigysy{mm-di
DFTITLE=I |The date is output with a 4-digit year component and no delimytgygromdyl

For each of these output formats, the sequence of the day, month and year components, and the delimiter
characters used, are determined byDR&ORM parameter.

The DFTITLE parameter can be set in the Natural parameter module/file, dynamically when Natural is invoked,
or with the system commar@LOBALS. It is evaluated at runtime.

Example:

This example assumes thatFORM=I applies.

WRITE 'HELLO’
END
/*
/* Date in page title if DFTITLE=S is set ... 98-10-31
/* Date in page title if DFTITLE=L is set ... 1998-10-31
/* Date in page title if DFTITLE=I is set ...: 19981031
Note:

TheDFTITLE parameter has no effect on a user-defined page title as specifiedMRIT& TITLE statement.

Copyright © Software AG 2003 187

Designing User Interfaces - Overview Designing User Interfaces - Overview

Designing User Interfaces - Overview

The user interface of an application, that is, the way an application presents itself to the user, is a key
consideration when writing an application.

This document provides information on the various possibilities Natural offers for designing user interfaces that
are uniform in presentation and provide powerful mechanisms for user guidance and interaction.

When designing user interfaces, standards and standardization are key factors.
Using Natural, you can offer the end user common functionality across various hardware and operating systems.

This includes the general screen layout (information, data and message areas), function-key assignment and the
layout of windows.

This document covers the following topics:

® Screen Design

Defining the general layout of screens.
e Dialog Design

Designing user interfaces.

188 Copyright © Software AG 2003

<Untitled> Screen Design

Screen Design

Screen Design

This document provides options to define a general screen layout:

Control of Function-Key Lines - Terminal Command %Y
Control of the Message Line - Terminal Command %M
Assigning Colors to Fields - Terminal Command %=
Outlining - Terminal Command %D=B

Statistics Line/Infoline - Terminal Command %X
Windows

Standard/Dynamic Layout Maps

Multilingual User Interfaces

Skill-Sensitive User Interfaces

Control of Function-Key Lines - Terminal Command %Y

With the terminal commanY you can define how and where the Natural function-key lines are to be
displayed.

Below is information on:

e Format of Function-Key Lines
® Positioning of Function-Key Lines
® Cursor-Sensitivity

Format of Function-Key Lines
The following terminal commands are available for defining the format of function-key lines:
%YN

The function-key lines are displayed in tabular Software AG format:

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

%YS

The function-key lines display the keys sequentially and only show those keys to which names have been
assigned (PFimlugPF2=valugetc.):

Command ===>
PF1=Help,PF3=Exit,PF12=Canc

%YP

Copyright © Software AG 2003 189

Positioning of Function-Key Lines <Untitled>

The function-key lines are displayed in PC-like format, that is, sequentially and only showing those keys to
which names have been assigned (RlseF2=valueetc.):

Command ===>
F1=Help,F3=Exit,F12=Canc

Other Display Options
Various other command options are available for function-key lines, such as:

single- and double-line display,
intensified display,

reverse video display,

color display.

For details on these options, $¥ - Control of PF-Key Linef the Natural Terminal Commands
documentation.

Positioning of Function-Key Lines
%YB

The function-key lines are displayed at the bottom of the screen:

16:50:53 FRkkk NATURAL *ve* 2002-12-18
User SAG - Main Menu - Library XYZ

Function

_ Development Functions

_ Development Environment Settings
__Maintenance and Transfer Utilities
_ Debugging and Monitoring Utilities
_ Example Libraries

_ Other Products

__Help

__ Exit Natural Session

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

%YT

The function-key lines are displayed at the top of the screen:

190 Copyright © Software AG 2003

<Untitled> Positioning of Function-Key Lines

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF 12---

Help Exit Canc
16:50:53 rekkx NATURAL *rxs* 2002-12-18
User SAG - Main Menu - Library XYZ
Function

_ Development Functions

_ Development Environment Settings
_ Maintenance and Transfer Utilities
_ Debugging and Monitoring Utilities
_ Example Libraries

_ Other Products

_Help

_ Exit Natural Session

Command ===>

%Y nn

The function-key lines are displayed on Imeof the screen. In the example below the function-key line has
been set to line 10:

16:50:53 ik NATURAL ** 2002-12-18
User SAG - Main Menu - Library XYZ

Function

_ Development Functions

_ Development Environment Settings

__ Maintenance and Transfer Utilities
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Canc

- Debugging and Monitoring Utilities

_ Example Libraries

_ Other Products

_Help

_ Exit Natural Session

Command ===>

Copyright © Software AG 2003 191

Control of the Message Line - Terminal Command %M <Untitled>

Cursor-Sensitivity
%YC

This command makes the function-key lines cursor-sensitive. This means that they act like an action bar on a PC
screen: you just move the cursor to the desired function-key number or name and press ENTER, and Natural
reacts as if the corresponding function key had been pressed.

To switch cursor-sensitivity off, you enter %YC again (toggle switch).

By using %YC in conjunction with tabular display format (%YN) and having only the function-key names
displayed (%YH), you can equip your applications with very comfortable action bar processing: the user merely
has to select a function name with the cursor and press ENTER, and the function is executed.

Control of the Message Line - Terminal Command %M

Various options of the terminal comma¥dM are available for defining how and where the Natural message
line is to be displayed.

Below is information on:

e Positioning the Message Line
® Message Line Protection
® Message Line Color

Positioning the Message Line
%MB

The message line is displayed at the bottom of the screen:

16:50:53 ik NATURAL ** 2002-12-18
User SAG - Main Menu - Library XYZ

Function

_ Development Functions

_ Development Environment Settings
__ Maintenance and Transfer Utilities
_ Debugging and Monitoring Utilities
_ Example Libraries

_ Other Products

_Help

_ Exit Natural Session

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc
Please enter a function.

192 Copyright © Software AG 2003

<Untitled> Assigning Colors to Fields - Terminal Command %=

%MT

The message line is displayed at the top of the screen:

Please enter a function.
16:50:53 rkxk NATURAL *exx* 2002-12-18
User SAG - Main Menu - Library XYZ

Function

_ Development Functions

_ Development Environment Settings
__Maintenance and Transfer Utilities
_ Debugging and Monitoring Utilities
_ Example Libraries

_ Other Products

__Help

_ Exit Natural Session

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

Other options for the positioning of the message line are descriB&ll inControl of Message Linia the
Natural Terminal Commands documentation.

Message Line Protection
%MP

The message line is switched from unprotected to protected mode or vice versa. In unprotected mode, the
message line can also be used for terminal input.

Message Line Color
%M-= color-code

The message line is displayed in the specified color (for an explanation of color codesssssitimeparameter
CD as described in the Natural Parameter Reference documentation).

Assigning Colors to Fields - Terminal Command %=

You can use the terminal commate: to assign colors to field attributes for programs that were originally not
written for color support. The command causes all fields/text defined with the specified attributes to be displayed
in the specified color.

If predefined color assignments are not suitable for your terminal type, you can use this command to override the
original assignments with new ones.

Copyright © Software AG 2003 193

Outlining - Terminal Command %D=B <Untitled>

You can also use the %= terminal command within Natural editors, for example to define color assignments
dynamically during map creation.

Codes| Description

blank | Clear color translate table.

Newly defined colors are to override colors assigned by the program.

Color attributes assigned by program are not to be modified.

Output field.

Modifiable field (output and input).

Text constant.

Blinking

Italic

O 0O m| H4|Z2|0|Z2|m

Default

Intensified

C

Underlined

Reverse video

BG Background

BL Blue
GR |Green
NE Neutral
Pl Pink
RE Red

TU Turquoise
YE Yellow

Example:
%=TI=RE,OB=YE

This example assigns the color red to all intensified text fields and yellow to all blinking output fields.

Outlining - Terminal Command %D=B

Outlining (boxing) is the capability to generate a line around certain fields when they are displayed on the
terminal screen. Drawing such "boxes" around fields is another method of showing the user the lengths of fields
and their positions on the screen.

Outlining is only available on certain types of terminals, usually those which also support the display of
double-byte character sets.

The terminal comman®hD=B is used to control outlining. For details on this command, see the relevant section
in the Natural Terminal Commands documentation.

194 Copyright © Software AG 2003

<Untitled> Statistics Line/Infoline - Terminal Command %X

Statistics Line/Infoline - Terminal Command %X

This terminal command controls the display of the Natural statistics line/infoline. The line can be used either as a
statistics line or as an infoline, but not both at the same time.

Below is information on:

® Statistics Line
e |[nfoline

Statistics Line

To turn the statistics line on/off, enter the terminal comn8aXd(this is a toggle function). If you set the
statistics line on, you can see statistical information, such as:

e the number of bytes transmitted to the screen during the previous screen operation,
e the logical line size of the current page,
e the physical line size of the window.

For full details regarding the statistics line, see the terminal com@bxnals described in the Natural Terminal
Commands documentation.

The example below shows the statistics line displayed at the bottom of the screen:

> >+ Program POS Lib SAG
All A+ 20 03 A+ BB LT
0010 SET CONTROL 'XT’
0020 SET CONTROL "XI+'
0030 DEFINE PRINTER (2) OUTPUT 'INFOLINE’
0040 WRITE (2) 'TEXECUTING’ *PROGRAM 'BY’ *INIT-USER
0050 WRITE 'TEST OUTPUT’
0070 END
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
10=264,Al =292,L.=0 C=,LS=80,P =23,PLS=80,PCS=24,FLD=82,CLS=1,ADA=0

Infoline

You can also use the statistics line agndmline where status information can be displayed, for example, for
debugging purposes, or you can use it as a separator line (as defined by SAA standards).

To define the statistics line as an infoline, you use the terminal command %XI+.

Once you have activated the infoline with the above command, you can define the infoline as the output
destination for data with tHeEFINE PRINTERstatement as demonstrated in the example below:

Copyright © Software AG 2003 195

Windows <Untitled>

Example:

SET CONTROL "XT’

SET CONTROL "XI+

DEFINE PRINTER (2) OUTPUT 'INFOLINE’

WRITE (2) 'EXECUTING’ *PROGRAM 'BY’ *INIT-USER
WRITE 'TEST OUTPUT’

END

When the above program is run, the status information is displayed in the infoline at the top of the output
display:

EXECUTING POS BY SAG
Page 1 2001-01-22 10:56:06

TEST OUTPUT

For further details on the statistics line/infoline, see the terminal com#Xramk described in the Natural
Terminal Commands documentation.

Windows

Below is information on:

e What is a Window?
e DEFINE WINDOW Statement
e [NPUT WINDOW Statement

What is a Window?
A windowis that segment of a logical page, built by a program, which is displayed on the terminal screen.

A logical pageis the output area for Natural; in other words the logical page contains the current report/map
produced by the Natural program for display. This logical page may be larger than the physical screen.

There is always a window present, although you may not be aware of its existence. Unless specified differently
(by aDEFINE WINDOW statement), the size of the window is identical to the physical size of your terminal
screen.

You can manipulate a window in two ways:

® You can control the size and position of the window orpthesicalscreen
® You can control the position of the window on thegical page

Positioning on the Physical Screen

The figure below illustrates the positioning of a window on the physical screen. Note that the same section of the
logical page is displayed in both cases, only the position of the window on the screen has changed.

196 Copyright © Software AG 2003

<Untitled> What is a Window?

Logical Page
Logical Page
;’ """" =
| Window!
________ 1 I________-l
! Winduwi
Physical Screen Physical Screen

Positioning on the Logical Page
The figure below illustrates the positioning of a window on the logical page.

When you change the position of the window onldiggcal page the size and position of the window on the
physical screenwill remain unchanged. In other words, the window is not moved over the page, but the page is
moved "underneath" the window.

Logical Page

Logical Page

Fhysical Screen

Physical Screen

Copyright © Software AG 2003

197

DEFINE WINDOW Statement <Untitled>

DEFINE WINDOW Statement

You use thdOEFINE WINDOW statement to specify the size, position and attributes of a window on the
physical screen

A DEFINE WINDOW statement does not activate a window; this is done vBETaWINDOW statement or
with theWINDOW clause of atNPUT statement.

Various options are available with tB&EFINE WINDOW statement. These are described below in the context
of the example.

The following program defines a window on the physical screen.

Example:

DEFINE DATA LOCAL
1 COMMAND (A10)
END-DEFINE
*
DEFINE WINDOW TEST
SIZE 5*25
BASE 5/40
TITLE 'Sample Window’
CONTROL WINDOW
FRAMED POSITION SYMBOL BOT LEFT
INPUT WINDOW="TEST’
WITH TEXT 'message line’
COMMAND (AD=l) /
‘dataline 1’/
‘dataline 2’/
‘dataline 3’ 'long data line’
IF COMMAND = 'TEST2’
FETCH 'TWIND2'
ELSE
REINPUT ’invalid command’
END-IF
END

Thewindow-nameidentifies the window. The hame may be up to 32 characters long. For a window name, the
same naming conventions apply as for user-defined variables. Here the name is TEST.

The window size is set with tf&ZE option. Here the window is 5 lines high and 25 columns (positions) wide.

The position of the window is set by tBASE option. Here the top left-hand corner of the window is positioned
on line 5, column 40.

With the TITLE option, you can define a title that is to be displayed in the window frame (of course, only if you
have defined a frame for the window).

With theFRAMED option, you define that the window is to be framed.

This frame is then cursor-sensitive. Where applicable, you can page forward, backward, left or right within the
window by simply placing the cursor over the appropriate symbol (<, -, +, or PG8H10Nclause) and then
pressing ENTER. In other words, you are movingltiggcal pageunderneath the window on the physical

screen. If no symbols are displayed, you can page backward and forward within the window by placing the
cursor in the top frame line (for backward positioning) or bottom frame line (for forward positioning) and then
pressing ENTER.

198 Copyright © Software AG 2003

<Untitled> INPUT WINDOW Statement

With the POSITION clause of tHeRAMED option, you define that information on the position of the window

on the logical page is to be displayed in the frame of the window. This applies only if the logical page is larger
than the window; if it is not, the POSITION clause will be ignored. The position information indicates in which
directions the logical page extends above, below, to the left and to the right of the current window.

If the POSITION clause is omitted, POSITION SYMBOL TOP RIGHT applies by default.

POSITION SYMBOLcauses the position information to be displayed in form of symbols: "More: < - + >". The
information is displayed in the top and/or bottom frame line.

TOP/BOTTOM determines whether the position information is displayed in the top or bottom frame line.
LEFT/RIGHT determines whether the position information is displayed in the left or right part of the frame line.

You can define which characters are to be used for the frame with the terminal cotaRrad.

¢ | The first character will be used for the famarnersof the window framd.

h | The second character will be used forlloeizontalframe lines.

v | The third character will be used for thertical frame lines.

Example:
Y%F=+-!

The above command makes the window frame look like this:

INPUT WINDOW Statement

TheINPUT WINDOW statement activates the window defined inbg=INE WINDOW statement. In the
example, the window TEST is activated. Note that if you wish to output data in a window (for example, with a
WRITE statement), you use tIi =T WINDOW statement.

When the above program is run, the window is displayed with one input field COMMAND:

Copyright © Software AG 2003 199

INPUT WINDOW Statement <Untitled>

>r >+ Program TWIND Lib SAG
Bot ..+..l..+..2..+.3. +. 4. .+ 5.+ 6 T
0030 END-DEFINE

0040 * +----Sample Window-----+
0050 DEFINE WINDOW TEST I message line !
0060 SIZE 5*25 ! COMMAND !
0070 BASE 5/40 ! dataline 1 !

0080 TITLE 'Sample Window’ +More: + >----mee- +

0090 CONTROL WINDOW
0100 FRAMED POSITION SYMBOL BOT LEFT
0110 INPUT WINDOW="TEST’
0120 WITH TEXT 'message line’
0130 COMMAND (AD=I) /
0140 ’'dataline 1'/
0150 ‘dataline 2’/
0160 'dataline 3’ ’long data line’
0170 IF COMMAND ='TEST2’
0180 FETCH 'TWIND2’
0190 ELSE
0200 REINPUT ’invalid command’
0210 END-IF
0220 END
et o+l 20 40304+ B+ S22 L3

In the bottom frame line, the position information "More + >" indicates that there is more information on the
logical page than is displayed in the window.

To see the information that is further down on the logical page, you place the cursor in the bottom frame line on
the plus (+) sign and press ENTER.

The window is now moved downwards. Note that the text "long data line" does not fit in the window and is
consequently not fully visible.

>r >+ Program TWIND Lib SAG
Bot ..+t..l..+..2..+.3. +. 4. .+ 56T
0030 END-DEFINE

0040 * +----Sample Window-----+
0050 DEFINE WINDOW TEST linvalid command !
0060 SIZE 5*25 ! dataline 2 !

0070 BASE 5/40 ! dataline 3 long data !
0080 TITLE 'Sample Window’ +More: - >--------- +

0090 CONTROL WINDOW

0100 FRAMED POSITION SYMBOL BOT LEFT
0110 INPUT WINDOW="TEST’
0120 WITH TEXT 'message line’
0130 COMMAND (AD=I) /

0140 ’'dataline 1'/

0150 ‘dataline 2'/

0160 'dataline 3’ ’'long data line’
0170 IF COMMAND ='"TEST2’
0180 FETCH 'TWIND2

0190 ELSE

0200 REINPUT 'invalid command’
0210 END-IF

0220 END

200 Copyright © Software AG 2003

<Untitled> INPUT WINDOW Statement

To see this hidden information to the right, you place the cursor in the bottom frame line on the ">" symbol and
press ENTER. The window is now moved to the right on the logical page and displays the previously invisible
word "line™:

>r >+ Program TWIND Lib SAG
Bot ..+..1..+.2.+.3. +. 4. . +. 5. .+.6..+.7.
0030 END-DEFINE

0040 * +----Sample Window-----+
0050 DEFINE WINDOW TEST linvalid command !
0060 SIZE 5*25 ! !

0070 BASE 5/40 lline !

0080 TITLE 'Sample Window’ +More: < - --------- +

0090 CONTROL WINDOW
0100 FRAMED POSITION SYMBOL BOT LEFT

Message and Function-Key Lines

With the CONTROL clause, you determine whether the function-key lines, the message line and the statistics
line are displayed in the window or on the full physical screen.

e CONTROL WINDOW displays the lines inside the window.
® CONTROL SCREEN displays the lines on the full physical screen outside the window.

If you omit the CONTROL clause, CONTROL WINDOW applies by default.

Multiple Windows

You can, of course, open multiple windows. However, only one Natural window is active at any one time, that
is, the most recent window. Any previous windows may still be visible on the screen, but are no longer active
and are ignored by Natural. You may enter input only in the most recent window. If there is not enough space to
enter input, the window size must be adjusted first.

When TEST2 is entered in the COMMAND field, the second program TWIND2 is executed.
Program TWINDZ2:

DEFINE DATA LOCAL
1 COMMAND (A10)
END-DEFINE
*
DEFINE WINDOW TEST2
SIZE 5*30
BASE 15/40
TITLE 'ANOTHER WINDOW’
CONTROL SCREEN
FRAMED POSITION SYMBOL BOT LEFT
INPUT WINDOW="TESTZ2’
WITH TEXT 'message line’
COMMAND (AD=U) /
‘dataline 1’/
‘dataline 2’/
‘dataline 3’ ’'long data line’
IF COMMAND ="TEST
FETCH 'TWIND’
ELSE
REINPUT ’invalid command’
END-IF
END

Copyright © Software AG 2003 201

Standard/Dynamic Layout Maps <Untitled>

A second window is opened. The other window is still visible, but it is inactive.

message line

>r >+ Program TWIND Lib SAG
Bot ..+..1..+.2.+.3. +. 4. . +. 5. .+.6..+.7.
0030 END-DEFINE

0040 * +----Sample Window-----+

0050 DEFINE WINDOW TEST linvalid command ! Inactive
0060 SIZE 5*25 I COMMAND TEST2 ! Window
0070 BASE 5/40 ! dataline 1 ! -—
0080 TITLE 'Sample Window’ +More: + >--------- +

0090 CONTROL WINDOW

0100 FRAMED POSITION SYMBOL BOT LEFT
0110 INPUT WINDOW="TEST’

0120 WITH TEXT 'message line’

0130 COMMAND (AD=I) /

0140 ’dataline 1’/ +omeee ANOTHER WINDOW------- + Currently
0150 ‘’dataline 2’/ ! COMMAND ! Active
0160 ’dataline 3’ ’long data line’ ! dataline 1 ! Window
0170 IF COMMAND = 'TEST2’ ! dataline 2 ! -—
0180 FETCH 'TWIND2 +More: + >----mm-memeeeee +

0190 ELSE

0200 REINPUT 'invalid command’

0210 END-IF

0220 END

et L+ 2040804 +50 4822 L3

Note that for the new window the message line is now displayed on the full physical screen (at the top) and not
in the window. This was defined by tB®NTROL SCREEN:lause in the TWIND2 program.

For further details on the statemeBSFINE WINDOW, INPUT WINDOW andSET WINDOW, see the
corresponding descriptions in the Natural Statements documentation.

Standard/Dynamic Layout Maps

Standard Layout Maps

As described in the sectidnutorial - Using the Map Editpastandard layoutan be defined in the map editor.
This layout guarantees a uniform appearance for all maps that reference it throughout the application.

When a map that references a standard layout is initialized, the standard layout becomes a fixed part of the map.
This means that if this standard layout is modified, all affected maps must be re-cataloged before the changes
take effect.

Dynamic Layout Maps

In contrast to a standard layoutlynamic layoutioes not become a fixed part of a map that references it, rather
it is executed at runtime.

This means that if you define the layout map as "dynamic" on the Define Map Settings For Map screen in the
map editor (see the example below), any modifications to the layout map are also carried out on all maps that
reference it. The maps need not be re-cataloged.

202 Copyright © Software AG 2003

<Untitled>

Multilingual User Interfaces

08:46:18 Define Map Settings for MAP 2001-01-22
Delimiters Format Context
Cls Att CD Del Page Size 23 Device Check

BLANK Line Size 79 WRITE Statement _
? Column Shift ... 0 (0/1) INPUT Statement X
_ Layout STAN1 Help

T D
T 1
A D -
Al) dynamic Y (Y/N) as field default N (Y/N)
AN @ Zero Print N (Y/N)
M D & Case Default ... UC (UC/LC)
M | Manual Skip N (Y/N) Automatic Rule Rank 1
O D + Decimal Char Profile Name SYSPROF
o1l (Standard Keys .. Y (Y/N)
Justification .. L (L/R) Filler Characters
Print Mode e
Optional, Partial _
Control Var Required, Partial _
Optional, Complete ... _
Apply changes only to new fields? N (Y/N) Required, Complete ... _

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Exit Let

For further details on layout maps, $dap Editorin the Natural Editors documentation.

Multilingual User Interfaces

Using Natural, you can create multilingual applications for international use.

Maps, helproutines, error messages, programs, subprograms and copycodes can be defined in up to 60 different

languages (including languages with double-byte character sets).

Below is information on:

Language Codes

Defining the Language of a Natural Object
Defining the User Language

Referencing Multilingual Objects
Programs

Error Messages

Edit Masks for Date and Time Fields

Language Codes

In Natural, each language halaguage coddfrom 1 to 60). The table below is an extract from the full table of

language codes.

Copyright © Software AG 2003

203

Defining the Language of a Natural Object <Untitled>

Language Code Language |Map Code in Object Names
1 English 1
2 German 2
3 French 3
4 Spanish 4
5 Italian 5
6 Dutch 6
7 Turkish 7
8 Danish 8
9 Norwegian |9
10 Albanian |A
11 Portuguese| B

The language code (left column) is the code that is contained in the system variable *LANGUAGE. This code is
used by Natural internally. It is the code you use to define the user languaBeffaée the User Language

below). The code you use to identify the language of a Natural objectisatheoden the right-hand column

of the table.

Example:

The language code for Portuguese is "11".
The code you use when cataloging a Portuguese Natural object is "B".

For the full table of language codes, see the system vaflabMGUAGE as described in the Natural System
Variables documentation.

Defining the Language of a Natural Object

To define the language of a Natural object (map, helproutine, program, subprogram or copycode), you add the
corresponding map code to the object name. Apart from the map code, the name of the object must be identical
for all languages.

In the example below, a map has been created in English and in German. To identify the languages of the maps,
the map code that corresponds to the respective language has been included in the map name.

Example of Map Names for a Multilingual Application:

DEMOL1 = English map (map code 1)
DEMO2 = German map (map code 2)

Defining Languages with Alphabetical Map Codes
Map codes are in the range 1-9, A-Z or a-y. The alphabetical map codes require special handling.

Normally, it is not possible to catalog an object with a lower-case letter in the name - all characters are
automatically converted into capitals.

This is however necessary, if for example you wish to define an object for Kanji (Japanese) which has the
language code 59 and the map code "x".

204 Copyright © Software AG 2003

<Untitled> Defining the User Language

To catalog such an object, you first set the correct language code (here 59) using the terminal é6lowmand
wherennis the language code

You then catalog the object using the ampersand (&) character instead of the actual map code in the object name.
So to have a Japanese version of the map DEMO, you stow the map under the name DEMO&.

If you now look at the list of Natural objects, you will see that the map is correctly listed as DEMOX.

Objects with language codes 1-9 and upper case A-Z can be cataloged directly without the use of the ampersand
(&) notation.

In the example list below, you can see the three maps DEMO1, DEMO2 and DEMOX. To delete the map
DEMOX, you use the same method as when creating it, that is, you set the correct language with the terminal
command»L=59 and then confirm the deletion with the & notation (DEMO&).

08:41:14 *rekk NATURAL LIST COMMAND *xx* 2001-01-25
User SAG LIST ** Library SAG

Cmd Name Type S/IC SM Vers Level User-ID Date Time

COM3 Program S/IC S 2.2 0002 SAG 92-01-21 14:34:39

__ CUR Program +--------- DELETE --------- + 92-01-22 09:37:02
__ CURS Map ! ! 92-01-22 09:37:41

D Program ! Please confirm deletion ! 92-01-21 14:13:14
__ DARL Program ! with name DEMOX ! 91-06-03 12:08:30
_ DARL1 Local ! DEMO&_ ! 91-06-03 12:03:52
__ DAV Program + + 92-01-29 09:07:52

de DEMOx Map S/IC S 2.2 0002 SAG 92-02-25 08:41:04
DEMOl1 Map S/IC S 2.2 0002 SAG 92-01-22 08:38:32
DEMO2 Map S/IC S 2.2 0002 SAG 92-01-22 08:07:32
DOWNCOM Program S S 2.2 0001 SAG 91-08-12 14:01:10
DOWNCOMR Program S S 2.2 0001 SAG 91-08-12 14:01:32
DOWNCOM2 Program S S 2.2 0001 SAG 91-08-15 13:02:20
__ DOWNDIR Program S S 2.2 0001 SAG 91-08-16 08:03:56
From (New start value) 0

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit - -+ Canc

Defining the User Language

You define the language to be used per user - as defined in the system variable *LANGUAGE - with the profile
parametetJLANG (which is described in the Natural Parameter Reference documentation) or with the terminal
command¥lL=nn (wherennis the language code).

Referencing Multilingual Objects
To reference multilingual objects in a program, you use the ampersand (&) character in the name of the object.

The program below uses the maps DEMO1 and DEMO2. The ampersand (&) character at the end of the map
name stands for the map code and indicates that the map with the current language as defined in the
*LANGUAGE system variable is to be used.

Example:

Copyright © Software AG 2003 205

Referencing Multilingual Objects <Untitled>

DEFINE DATA LOCAL
1 PERSONNEL VIEW OF EMPLOYEES
2 NAME (A20)
2 PERSONNEL-ID (A8)
1 CAR VIEW OF VEHICLES
2 REG-NUM (A15)
1 #CODE (N1)
END-DEFINE

*

INPUT USING MAP 'DEMO&’ /* <--- INVOKE MAP WITH CURRENT LANGUAGE CODE

When this program is run, the English map (DEMO1) is displayed. This is because the current value of
*LANGUAGE is "1" = English.

MAP DEMO1

SAMPLE MAP

Please select a function!

1.) Employee information

2.) Vehicle information

Enter code here: _

In the example below, the language code has been switched to "2" = German with the terminal doior2and

When the program is now run, the German map (DEMO?2) is displayed.

BEISPIEL-MAP

Bitte wahlen Sie eine Funktion!

1.) Mitarbeiterdaten

2.) Fahrzeugdaten

Code hier eingeben: _

206 Copyright © Software AG 2003

<Untitled> Skill-Sensitive User Interfaces

Programs

For some applications it may be useful to define multilingual programs. For example, a standard invoicing
program, might use different subprograms to handle various tax aspects, depending on the country where the
invoice is to be written.

Multilingual programs are defined with the same technique as described above for maps.

Error Messages

Using the Natural utility SYSERR, you can translate Natural error messages into up to 60 languages, and also
define your own error messages.

Which message language a user sees, depends on the *LANGUAGE system variable.

For further information on error messages, see the N&YGERR Utilitydocumentation.

Edit Masks for Date and Time Fields

The language used for date and time fields defined with edit masks also depends on the system variable
*LANGUAGE.

For details on edit masks, see the session paraEdtes described in the Natural Parameter Reference
documentation.

Skill-Sensitive User Interfaces

Users with varying levels of skill may wish to have different maps (of varying detail) while using the same
application.

If your application is not for international use by users speaking different languages, you can use the techniques
for multilingual maps to define maps of varying detail.

For example, you could define language code 1 as corresponding to the skill of the beginner, and language code
2 as corresponding to the skill of the advanced user. This simple but effective technique is illustrated below.

The following map (PERS1) includes instructions for the end user on how to select a function from the menu.
The information is very detailed. The name of the map contains the map code 1:

Copyright © Software AG 2003 207

Skill-Sensitive User Interfaces <Untitled>

MAP PERS1
SAMPLE MAP

Please select a function

1.) Employee information _
2.) Vehicle information _
Enter code: _
To select a function, do one of the following:
- place the cursor on the input field next to desired function and press ENTER
- mark the input field next to desired function with an X and press ENTER

- enter the desired function code (1 or 2) in the ’Enter code’ field and press
ENTER

The same map, but without the detailed instructions is saved under the same name, but with map code 2.

MAP PERS2

SAMPLE MAP

Please select a function

1.) Employee information _

2.) Vehicle information _

Enter code: _

In the example above, the map with the detailed instructions is output, if the ULANG profile parameter has the
value 1, the map without the instructions if the value is 2.

Further details oLANG are described in Profile Parameters in the Natural Parameter Reference
documentation.

208 Copyright © Software AG 2003

Dialog Design Dialog Design

Dialog Design

This document tells you how you can design user interfaces that make user interaction with the application
simple and flexible:

® Field-Sensitive Processing
*CURS-FIELD and POSield-namé

® Simplifying Programming
System Function POS

® Line-Sensitive Processing
System Variable *CURS-LINE

® Column-Sensitive Processing
System Variable *CURS-COL

® Processing Based on Function Keys
System Variable *PF-KEY

® Processing Based on Function-Key Names
System Variable *PF-NAME

® Processing Data Outside an Active Window
System Variable *COM

® Copying Data from a Screen
Terminal Commands %CS and %CC

e Statements REINPUT/REINPUT FULL

® Object-Oriented Processing
Natural Command Processor

Field-Sensitive Processing
*CURS-FIELD and POS(field-name

Using the system variabf#€URS-FIELD together with the system functi®®©S(ield-nam@, you can define
processing based on the field where the cursor is positioned at the time the user presses ENTER.

*CURS-FIELD contains the internal identification of the field where the cursor is currently positioned; it cannot
be used by itself, but only in conjunction with P@&¢-name.

You can use *CURS-FIELD and PQi®s{d-namég, for example, to enable a user to select a function simply by
placing the cursor on a specific field and pressing ENTER.

The example below illustrates such an application:

Example:

DEFINE DATA LOCAL
1 #EMP (A1)

1 #CAR (A1)

1 #CODE (N1)
END-DEFINE

*

INPUT USING MAP 'CURS’
*
DECIDE FOR FIRST CONDITION
WHEN *CURS-FIELD = POS(#EMP) OR #EMP ="X' OR #CODE = 1
FETCH 'LISTEMP’
WHEN *CURS-FIELD = POS(#CAR) OR #CAR ="X' OR #CODE = 2

Copyright © Software AG 2003 209

Simplifying Programming Dialog Design

FETCH 'LISTCAR’
WHEN NONE
REINPUT 'PLEASE MAKE A VALID SELECTION’
END-DECIDE

END

SAMPLE MAP
Please select a function
1.) Employee information
2.) Vehicle information _ - Cursor positioned
on field
Enter code: _
To select a function, do one of the following:
- place the cursor on the input field next to desired function and press ENTER
- mark the input field next to desired function with an X and press ENTER

- enter the desired function code (1 or 2) in the 'Enter code’ field and press
ENTER

If the user places the cursor on the input field (#EMP) next to Employee information, and presses ENTER, the
program LISTEMP displays a list of employee names:

Page 1 2001-01-22 09:39:32

ABELLAN
ACHIESON
ADAM
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
AECKERLE
AFANASSIEV
AFANASSIEV
AHL
AKROYD

Simplifying Programming

System Function POS

The Natural system functidhOS(ield-namé@ contains the internal identification of the field whose name is
specified with the system function.

210 Copyright © Software AG 2003

Dialog Design Line-Sensitive Processing

POS(ield-nam@ may be used to identify a specific field, regardless of its position in a map. This means that the
sequence and number of fields in a map may be changed, butdRIE{Me will still uniquely identify the

same field. With this, for example, you need only a siRE#NPUT statement to make the field to be MARKed
dependent on the program logic.

Note:
The values of CURS-FIELD and POSf{eld-nam@ serve for internal identification of the fields only. They
cannot be used for arithmetical operations.

Example:

DECIDE ON FIRST VALUE OF ...
VALUE ...
COMPUTE #FIELDX = POS(FIELD1)
VALUE ...
COMPUTE #FIELDX = POS(FIELD2)

END-DECIDE

REINPUT ... MARK #FIELDX

Full details on*CURS-FIELD andPOSf{ield-namé are described in the Natural System Variables and System
Functions documention.

Line-Sensitive Processing
System Variable *CURS-LINE

Using the system variabf€URS-LINE, you can make processing dependent on the line where the cursor is
positioned at the time the user presses ENTER.

Using this variable, you can make user-friendly menus. With the appropriate programming, the user merely has
to place the cursor on the line of the desired menu option and press ENTER to execute the option.

The cursor position is defined within the current active window, regardless of its physical placement on the
screen.

Note:
The message line, function-key lines and statistics line/infoline are not counted as data lines on the screen.

The example below demonstrates line-sensitive processing usit@QURS-LINE system variable. When the

user presses ENTER on the map, the program checks if the cursor is positioned on line 8 of the screen which
contains the option "Employee information”. If this is the case, the program that lists the names of employees
LISTEMP is executed.

Example:

DEFINE DATA LOCAL
1 #EMP (A1)

1 #CAR (A1)

1 #CODE (N1)
END-DEFINE

*

INPUT USING MAP 'CURS’

*

DECIDE FOR FIRST CONDITION
WHEN *CURS-LINE = 8

Copyright © Software AG 2003 211

Column-Sensitive Processing Dialog Design

FETCH 'LISTEMP’

WHEN NONE

REINPUT 'PLACE CURSOR ON LINE OF OPTION YOU WISH TO SELECT’
END-DECIDE
END

Company Information

Please select a function

[l 1.) Employee information

2.) Vehicle information

Place the cursor on the line of the option you wish to select and press
ENTER

The user places the cursor indicated]byn the line of the desired option and presses ENTER and the
corresponding program is executed.

Column-Sensitive Processing
System Variable *CURS-COL

The system variablBCURS-COL can be used in a similar way to *CURS-LINE described above. With
*CURS-COL you can make processing dependent on the column where the cursor is positioned on the screen.

Processing Based on Function Keys
System Variable *PF-KEY

Frequently you may wish to make processing dependent on the function key a user presses.

This is achieved with the statem@&E&T KEY, the system variabPF-KEY and a modification of the default
map settings (Standard Keys = "Y").

The SET KEY statement assigns functions to function keys during program execution. The system variable
*PF-KEY contains the identification of the last function key the user pressed.

The example below illustrates the use of SET KEY in combination with *PF-KEY.

Example:

212 Copyright © Software AG 2003

Dialog Design Processing Based on Function-Key Names

SET KEY PF1

*
NPUT USING MAP 'DEMO&’
IF *PF-KEY = 'PFYl’
WRITE 'Help is currently not active’
END-IF

The SET KEY statement activates PF1 as a function key.

The IF statement defines what action is to be taken when the user presses PF1. The system variable *PF-KEY is
checked for its current content; if it contains PF1, the corresponding action is taken.

Further details regarding the statem®Bil KEY and the system variabt®F-KEY are described in the Natural
Statements and the Natural System Variables documentation respectively.

Processing Based on Function-Key Names
System Variable *PF-NAME

When defining processing based on function keys, further comfort can be added by using the system variable
*PF-NAME. With this variable you can make processing dependent on the hame of a function, not on a specific
key.

The variable *PF-NAME contains the name of the last function key the user pressed (that is, the name as
assigned to the key with tiNAMED clause of th&ET KEY statement).

For example, if you wish to allow users to invoke help by pressing either PF3 or PF12, you assign the same
name (in the example below: INFO) to both keys. When the user presses either one of the keys, the processing
defined in thdF statement is performed.

Example:

SET KEY PF3 NAMED 'INFO’
PF12 NAMED 'INFO’
INPUT USING MAP 'DEMO&’
IF *PF-NAME ="INFO’
WRITE 'Help is currently not active’
END-IF

The function names defined with NAMED appear in the function-key lines:

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
INFO INFO

Processing Data Outside an Active Window

Below is information on:

® System Variable *COM
® Example Usage of *COM
® Positioning the Cursor to *COM - %T* Terminal Command

Copyright © Software AG 2003 213

System Variable *COM Dialog Design

System Variable *COM

As stated above, onlgne window is active at any one time. This normally means that input is only possible
within that particular window.

Using the*COM system variable, which can be regarded as a communication area, it is possible to enter data
outside the current window.

The prerequisite is that a map contains *COM as a modifiable field. This field is then available for the user to
enter data when a window is currently on the screen. Further processing can then be made dependent on the
content of *COM.

This allows you to implement user interfaces as already used, for example, by Con-nect, Software AG'’s office
system, where a user can always enter data in the command line, even when a window with its own input fields
is active.

Note that *COM is only cleared when the Natural session is ended.

Example Usage of *COM

In the example below, the program ADD performs a simple addition using the input data from a map. In this
map,*COM has been defined as a modifiable field (at the bottom of the map) with the length specified in the AL
field of the Extended Field Editing . The result of the calculation is displayed in a window. Although this
window offers no possibility for input, the user can still use the *COM field in the map outside the window.

Program ADD:

DEFINE DATA LOCAL

1 #VALUE1 (N4)

1 #VALUE2 (N4)

1 #SUM3 (N8)

END-DEFINE

*

DEFINE WINDOW EMP
SIZE 8*17
BASE 10/2
TITLE 'Total of Add’
CONTROL SCREEN
FRAMED POSITION SYMBOL BOT LEFT

*

INPUT USING MAP "WINDOW’

*

COMPUTE #SUM3 = #VALUE1 + #VALUE2
*
SET WINDOW 'EMP’
INPUT (AD=0) / 'Value 1 +'/
'Value 2 =" //
T #SUM3

IF*COM ="M’
FETCH 'MULTIPLY’ #VALUE1 #VALUE2
END-IF
END

214 Copyright © Software AG 2003

Dialog Design Positioning the Cursor to *COM - the %T* Terminal Command

Map to Demonstrate Windows with *COM
CALCULATOR

Enter values you wish to calculate

Value 1: 12
Value 2: 12
+-Total of Add-+
! !
Value1+ !
IValue2= !

Next line is input field (*COM) for input outside the window:

In this example, by entering the value "M", the user initiates a multiplication function; the two values from the
input map are multiplied and the result is displayed in a second window:

Map to Demonstrate Windows with *COM
CALCULATOR

Enter values you wish to calculate

Value 1: 12
Value 2: 12
+-Total of Add-+ Fommmmm e +
! ! ! !
'Value 1 + ! 'Value1x !
'Value2= ! 'Value2= !
! ! ! !
! 24 1 1144)
| | | |
B + [+

Next line is input field (*COM) for input outside the window:
M

Positioning the Cursor to *COM - the %T* Terminal Command

Normally, when a window is active and the window contains no input fields§ or AD=A), the cursor is
placed in the top left corner of the window.

With the terminal comman&T*, you can position the cursor td@OM system variable outside the window
when the active window contains no input fields.

By using %T* again, you can switch back to standard cursor placement.

Copyright © Software AG 2003 215

Copying Data from a Screen Dialog Design

Example:

INPUT USING MAP "WINDOW

*

COMPUTE #SUM3 = #VALUEL + #VALUE2

SET CONTROL 'T*
SET WINDOW 'EMP’
INPUT (AD=0) / Value 1 +'/
Value 2 ="//
T #SUM3

Copying Data from a Screen

Below is information on:

® Terminal Commands %CS and %CC
® Selecting a Line from Report Output for Further Processing

Terminal Commands %CS and %CC

With these terminal commands, you can copy parts of a screen into the Naturé«@&bi(into the system
variable*COM (%CQ). The protected data from a specific screen line are copied field by field.

The full options of thesterminal commandare described in the Natural Terminal Commands documentation.

Once copied to the stack ®EOM, the data are available for further processing. Using these commands, you can
make user-friendly interfaces as in the example below.

Selecting a Line from Report Output for Further Processing
In the following example, the program COML1 lists all employee names from Abellan to Alestia.

Program COM1.:

DEFINE DATA LOCAL
1 EMP VIEW OF EMPLOYEES
2 NAME(A20)
2 MIDDLE-NAME (A20)
2 PERSONNEL-ID (A8)
END-DEFINE
*

READ EMP BY NAME STARTING FROM 'ABELLAN’ THRU "ALESTIA’
DISPLAY NAME

END-READ

FETCH 'COM2’

END

216 Copyright © Software AG 2003

Dialog Design Selecting a Line from Report Output for Further Processing

Page 1 2001-01-22 08:21:22

ABELLAN
ACHIESON
ADAM
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
AECKERLE
AFANASSIEV
AFANASSIEV
AHL
AKROYD
ALEMAN
ALESTIA
MORE

Control is now passed to the program COM2.
Program COM2:

DEFINE DATA LOCAL
1 EMP VIEW OF EMPLOYEES
2 NAME(A20)
2 MIDDLE-NAME (A20)
2 PERSONNEL-ID (A8)
1 SELECTNAME (A20)
END-DEFINE

*

SET KEY PF5 ="%CCC’

*

INPUT NO ERASE 'SELECT FIELD WITH CURSOR AND PRESS PF¥%’

* MOVE *COM TO SELECTNAME

FIND EMP WITH NAME = SELECTNAME
DISPLAY NAME PERSONNEL-ID

END-FIND

END

In this program, the terminal comma¥CCCis assigned to PF5. The terminal command copies all protected
data from the line where the cursor is positioned to the system vai@bM. This information is then available
for further processing. This further processing is defined in the program lines shiogldfate

The user can now position the cursor on the name that interests him; when he/she now presses PF5, further
employee information is supplied.

Copyright © Software AG 2003 217

Statements REINPUT/REINPUT FULL Dialog Design

SELECT FIELD WITH CURSOR AND PRESS PF5 2001-01-22 08:20:22

ABELLAN
ACHIESON
ADAM <+ Cursor positioned on name for which more information is required
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
AECKERLE
AFANASSIEV
AFANASSIEV
AHL
AKROYD
ALEMAN
ALESTIA

In this case, the personnel ID of the selected employee is displayed:

Page 1 2001-01-22 08:20:30

NAME PERSONNEL
ID

ADAM 50005800

Statements REINPUT/REINPUT FULL

If you wish to return to and re-executel&PUT statement, you use tiREINPUT statement. It is generally
used to display a message indicating that the data input as a result of the previous INPUT statement were invalid.

If you specify theFULL option in a REINPUT statement, the corresponding INPUT statement will be
re-executed fully:

e With an ordinary REINPUT statement (without FULL option), the contents of variables that were changed
between the INPUT and REINPUT statement will not be displayed; that is, all variables on the screen will
show then contents they had when the INPUT statement was originally executed.

e With a REINPUT FULL statement, all changes that have been made after the initial execution of the
INPUT statement will be applied to the INPUT statement when it is re-executed; that is, all variables on the
screen contain the values they had when the REINPUT statement was executed.

e If you wish to position the cursor to a specified field, you can uskI&RK option, and to position to a
particular position within a specified field, you use the MARK POSITION option.

The example below illustrates the usdR&INPUT FULL with MARK POSITION.

Example:

218 Copyright © Software AG 2003

Dialog Design Object-Oriented Processing

DEFINE DATA LOCAL
1 #A (A10)
1 #B (N4)
1 #C (N4)
END-DEFINE
*
INPUT (AD=M) #A #B #C
IF#A=""
COMPUTE #B = #B + #C
RESET #C
REINPUT FULL 'Enter a value’ MARK POSITION 5 IN *#A
END-IF
END

The user enters 3 in field #B and 3 in field #C and presses ENTER.

#A #B 3#C 3

The program requires field #A to be non-blank. The REINPUT FULL statement with MARK POSITION 5 IN
*#A returns the input screen; the now modified variable #B contains the value 6 (aff€NHeRUTE
calculation has been performed). The cursor is positioned to the 5th position in field #A ready for new input.

Enter name of field
#A _ #B 6#C O

Cursor positioned to 5th position in field

Enter a value

This is the screen that would be returned by the same statement, without the FULL option. Note that the
variables #B and #C have been reset to their status at the time of execution of the INPUT statement (each field
contains the value 3).

#A #B 3 #C 3

Object-Oriented Processing

Natural Command Processor
The Natural Command Processor is used to define and control navigation within an application.
The Natural Command Processor consists of two padesvelopment partand aruntime part .

e Thedevelopment partis the utility SYSNCP With this utility, you define commands and the actions to be
performed in response to the execution of these commands. From your definitions, SYSNCP generates
decision tables which determine what happens when a user enters a command.

® Therun-time part is the statemelRROCESS COMMANDThis statement is used to invoke the
Command Processor within a Natural program. In the statement you specify the name of the SYSNCP table
to be used to handle the data input by a user at that point.

Copyright © Software AG 2003 219

Natural Command Processor Dialog Design

For further information regarding the Natural Command Processor, see the SY¥BNCP Utility
documentation and the statemBPROCESS COMMANDas described in the Natural Statements documentation.

220 Copyright © Software AG 2003

Keywords and Reserved Words Keywords and Reserved Words

Keywords and Reserved Words

This document contains a list of all keywords and words that are reserved in the Natural programming language.

To avoid possible naming conflicts, you are strongly recommended not to
use these keywords or reserved words or components thereof as names for
your data or procedures.

The following topics are covered:

e Performing a Keyword Check
® Alphabetical List of Keywords and Reserved Words

Performing a Keyword Check

To check that your code is free of keywords, you can use one of the following check facilities:

® Profile parameteKC (available only on UNIX and Windows)

o KCHECK option of theCMPO profile parameter diTCMPO parameter macro (available only on
mainframe platforms)

e KCHECK option of theCOMPOPTsystem command (available only on mainframe platforms)

By default, no keyword check is performed.

Alphabetical List of Keywords and Reserved Words

The following list is an overview of Natural keywords and reserved words and is for general information only. In
case of doubt, use theyword checKunction of the compiler.

[AIBICIDIEIF|IGIH|T[IIKILIMINJOIP|QIRI|S|TIU|V|WI[X]Y |Z]

Symbols and Special Characters

*%k

*APPLIC-ID
*APPLIC-NAME
*AVER

*COM

Copyright © Software AG 2003 221

Symbols and Special Characters

*CONVID

*COUNT

*COUNTER

*CPU-TIME

*CURRENT-UNIT

*CURS-COL

*CURS-FIELD

*CURS-LINE

*CURSOR

*DATA

*DAT4D

*DAT4E

*DATA4I

*DAT4J

*DAT4U

*DATD

*DATE

*DATG

*DATI

*DATJ

*DATN

*DATU

*DATX

*DEVICE

*DIALOG-ID

*ERROR

*ERROR-LINE

*ERROR-NR

*ERROR-TA

*ETID

*EVENT

*GROUP

*HARDCOPY

*HARDWARE

*HOSTNAME

*IN

222

Keywords and Reserved Words

Copyright © Software AG 2003

Keywords and Reserved Words

*INIT-1D

*INIT-PROGRAM

*INIT-USER

*IR

*ISN

*LANGUAGE

*LBOUND

*LEADING

*LENGTH

*LEVEL

*LIBRARY-ID

*LINE-COUNT

*LINESIZE

*LOG-LS

*LOG-PS

*MACHINE-CLASS

*MAX

*MAXVAL

*MIN

*MINVAL

*NATVERS

*NAVER

*NET-USER

*NCOUNT

*NMIN

*NUMBER

*OCC

*OCCURRENCE

*Ol

*OLD

*OPSYS

*OS

*OSVERS

*OuT

*OUTIN

*PAGE-NUMBER

Copyright © Software AG 2003

Symbols and Special Characters

223

Symbols and Special Characters

*PAGESIZE

*PARM-USER

*PARSE-COL

*PARSE-LEVEL

*PARSE-NAMESPACE-URI

*PARSE-ROW

*PARSE-TYPE

*PATCH-LEVEL

*PF-KEY

*PF-NAME

*PID

*PROGRAM

*ROWCOUNT

*SCREEN-IO

*SERVER-TYPE

*STARTUP

*STEPLIB

*SUBROUTINE

*SUM

*TCV

*THIS-OBJECT

*TIMD

*TIME

*TIMESTMP

*TIMN

*TIMX

*TPSYS

*TOTAL

*TRAILING

*TRANSLATE

*TRIM

*TYPE

*UBOUND

*UI

*USER

*USER-NAME

224

Keywords and Reserved Words

Copyright © Software AG 2003

Keywords and Reserved Words

*WINDOW-LS

*WINDOW-POS

*WINDOW-PS

*WINMGR

*WINMGRVERS

N

N>

A

A-AVER

A-MAX

A-MIN

A-NAVER

A-NCOUNT

A-NMIN

A-SUM

ABS

ABSOLUTE

ACCEPT

ACTION

ACTIVATION

AD

ADD

ADHOC

AFTER

AL

ALARM

Copyright © Software AG 2003

225

ALL

ALPHA

ALPHABETICALLY

AND

AND TRANSLATE

ANY

APPL

APPLICATION

APPLIC-ID

APPLIC-NAME

ARRAY

AS

ASC

ASCENDING

ASSIGN

ASSIGNING

ASYNC

AT

AT BREAK

AT END

AT START

AT TOP

ATN

ATT

ATTRIBUTES

AUTH

AUTHORIZATION

AUTO

AVER

AVG

-B -

226

Keywords and Reserved Words

Copyright © Software AG 2003

Keywords and Reserved Words

BACKOUT

BACKWARD

BASE

BATCH

BEFORE

BETWEEN

BLOCK

BLOCKE

BLOCKED

BOT

BOTTOM

BREAK

BROWSE

BUT

BUT NOT

BX

BY

-C-

C

CABINET

CABINETS

CALL

CALLDBPROC

CALLING

CALLNAT

CAP

CAPTIONED

CASE

CAT

CATALL

CATALOG

CATLG

CcC

CD

CDID

Copyright © Software AG 2003

227

CF

CHAR

CHECK

CHILD

CIPH

CIPHER

CLASS

CLEAR

CLOSE

CLOSE CONVERSATION

CLOSE LOOP

CLOSE PC

CLOSE PRINTER

CLOSE WORK

CLR

CMS

COALESCE

COM

COMMAND

COMMIT

COMPOSE

COMPRESS

COMPUTE

CONCAT

CONDITION

CONST

CONSTANT

CONTEXT

CONTROL

CONVERSATION

COPIES

COPY

COSs

COUNT

COUPLED

CR

228

Keywords and Reserved Words

Copyright © Software AG 2003

Keywords and Reserved Words

CREATE

CREATE OBJECT

CURRENT

CURS-FIELD

CURSOR

Ccv

-D -

DATA

DATAAREA

DATE

DAY

DAYS

DC

DEBUG

DECIDE

DECIMAL

DEFINE

DEFINE CLASS

DEFINE DATA

DEFINE SERVER

DEFINE VIEW

DELETE

DELIMITED

DELIMITER

DELIMITERS

DESC

DESCENDING

DEST

DESTINATION

DIALOG

DIALOG-ID

DIGITS

DIRECTION

DISABLED

DISP

Copyright © Software AG 2003

229

DISPLAY

DISPLAY FORMATTED

DISTINCT

DIVIDE

DLOGOFF

DLOGON

DNATIVE

DNRET

DO

DOCUMENT

DOEND

DOWNLOAD

DRAW

DU

DUMP

DY

DYNAMIC

-E -

E

EDIT

EDITED

EDT

EJ

EJECT

ELSE

EM

END

END-ACTION

END-ALL

END-BEFORE

END-BLOCK

END-BREAK

END-BROWSE

END-CLASS

END-DECIDE

230

Keywords and Reserved Words

Copyright © Software AG 2003

Keywords and Reserved Words

END-DEFINE

END-ENDDATA

END-ENDFILE

END-ENDPAGE

END-ERROR

END-FILE

END-FIND

END-FOR

END-FUNCTION

END-HISTOGRAM

ENDHOC

END-IF

END-INTERFACE

END-JOIN

END-LOOP

END-METHOD

END-NOREC

END-PARAMETERS

END-PARSE

END-PROCESS

END-PROPERTY

END-PROTOTYPE

END-READ

END-REPEAT

END-RESULT

END-SELECT

END-SERVER

END-SORT

END-START

END-SUBROUTINE

END-TOPPAGE

END-UNITE

END-VALUE

END-VALUES

END-VIEW

END-WORK

Copyright © Software AG 2003

231

ENDHOC

ENDING

ENDING AT

ENTER

ENTIRE

ENTR

EQ

EQUAL

EQUAL TO

ERASE

ERROR

ERROR-LINE

ERROR-TA

ERRORS

ES

ESCAPE

ETID

EVEN

EVENT

EVERY

EX

EXAMINE

EXCEPT

EXEC

EXECUTE

EXISTS

EXIT

EXP

EXPAND

EXPORT

EXTERNAL

EXTRACTING

-F-

232

Keywords and Reserved Words

Copyright © Software AG 2003

Keywords and Reserved Words

FALSE

FC

FETCH

FIELD

FIELDS

FILE

FILES

FILL

FILLER

FIN

FINAL

FIND

FIRST

FL

FLOAT

FOR

FORM

FORMAT

FORMATTED

FORMATTING

FORMS

FORWARD

FOUND

FRAC

FRAMED

FROM

FS

FULL

FUNCTION

FUNCTIONS

-G -

Copyright © Software AG 2003

233

GC

GDA

GE

GEN

GENERATED

GET

GFID

GIVE

GIVING

GLOBAL

GLOBALS

GRAPHICS

GREATER

GREATER EQUAL

GREATER THAN

GROUP

GROUP BY

GT

GUI

234

Keywords and Reserved Words

Copyright © Software AG 2003

Keywords and Reserved Words

H

HANDLE

HAVING

HC

HD

HE

HEADER

HELLO

HELP

HEX

HISTOGRAM

HOLD

HORIZ

HORIZONTALLY

HOUR

HOURS

HW

IDENTICAL

IF

IGNORE

IM

IMMEDIATE

IMPORT

IN

INC

INCCONT

INCDIC

INCDIR

INCLUDE

INCLUDED

INCLUDING

Copyright © Software AG 2003

235

INCMAC

INDEPENDENT

INDEX

INDEXED

INDICATOR

INDX

INIT

INITIAL

INNER

INPL

INPUT

INSERT INTO

INT

INTEGER

INTERCEPTED

INTERFACE

INTERFACED

INTERMEDIATE

INTERSECT

INTO

INVERTED

INVESTIGATE

JOIN

JUST

JUSTIFIED

-K -

236

Keywords and Reserved Words

Copyright © Software AG 2003

Keywords and Reserved Words -L-

KD

KEY

KEYS

Copyright © Software AG 2003 237

L

LANGUAGE

LAST

LC

LE

LEAVE

LEAVING

LEFT

LENGTH

LESS

LESS EQUAL

LESS THAN

LEVEL

LIB

LIBPW

LIBRARY

LIBRARY-PASSWORD

LIKE

LIMIT

LINDICATOR

LINES

LIST

LISTED

LOCAL

LOG

LOG-LS

LOG-PS

LOGICAL

LOGOFF

LOGON

LOOP

LOWER

LOWER CASE

LS

LT

238

Keywords and Reserved Words

Copyright © Software AG 2003

Keywords and Reserved Words

-M -

M

MACROAREA

MAIL

MAINMENU

MAP

MARK

MASK

MAX

MC

MCG

MESSAGES

METHOD

MGID

MICRO

MICROSECOND

MIN

MINUTE

MIX

MODIFIED

MODULE

MODULES

MONTH

MORE

MOVE

MOVING

MP

MS

MT

MULTI-FETCH

MULTIPLY

-N -

NAME

NAMED

Copyright © Software AG 2003

239

NAMESPACE

NATIVE

NAVER

NC

NCOUNT

NE

NET

NEWPAGE

NL

NMIN

NO

NO ERASE

NO PARAMETER

NO PARMS

NODE

NOHDR

NONE

NORMALIZE

NOT

NOT <

NOT >

NOT =

NOT EQ

NOT GT

NOT LT

NOTEQUAL

NOTIT

NOTITLE

NPC

NPLCMD1

NPLCMD2

NPLCMD3

NULL

NULL-HANDLE

NUMBER

NUMERIC

240

Keywords and Reserved Words

Copyright © Software AG 2003

Keywords and Reserved Words

-0 -

O

OBJECT

OBTAIN

OCCURRENCES

OF

OFF

OFFSET

OLD

ON

ON ACTION

ON ERROR

ONCE

OPEN

OPEN CONVERSATION

OPTIMIZE

OPTIONAL

OPTIONS

OR

OR =

ORDER

OREQ

OR EQUAL

OR EQUAL TO

OR=

ORDER BY

OUTER

OUTPUT

OVFLW

-P-

PAGE

PAGES

PARAMETER

PARAMETERS

Copyright © Software AG 2003

241

PARENT

PARSE

PASS

PASSW

PASSWORD

PATH

PATTERN

PAl

PA2

PA3

PC

PD

PEN

PERFORM

PF-NAME

PR (n=1to9)

PFn (nn= 10 to 99)

PGDN

PGUP

PGM

PHYSICAL

PLOT

PM

POLICY

POS

POSITION

PR

PREFIX

PREV

PREVIOUS

PRIMARY

PRINT

PRINTER

PRIORITY

PRIVATE

PROCESS

242

Keywords and Reserved Words

Copyright © Software AG 2003

Keywords and Reserved Words

PROCESSING

PROFILE

PROGRAM

PROGRAMS

PROPERTY

PROTOTYPE

PRTY

PS

PT

PURGE

PW

Q

QUARTER

‘R -

R

RD

READ

READONLY

REC

RECORD

RECORDS

RECURSIVELY

REDEFINE

REDUCE

REFERENCED

REFERENCING

REINPUT

REJECT

REL

RELATION

RELATIONSHIP

RELEASE

REMAINDER

RENAME

Copyright © Software AG 2003

243

-S- Keywords and Reserved Words

RENUM

RENUMBER

REPEAT

REPEATED

REPLACE

REPORT

REPORTER

REPOSITION

REQUEST

REQUIRED

RESET

RESETTING

RESIZE

RESPONSE

RESTORE

RESULT

RET

RETAIN

RETAINED

RETRY

RETURN

RETURNS

REVERSED

RG

RIGHT

ROLLBACK

ROUNDED

ROUTINE

ROWS

RULEVAR

RUN

RUNMODE

-S-

SA

SAME

244 Copyright © Software AG 2003

Keywords and Reserved Words

SAVE

SCAN

SCR

SCRATCH

SCREEN

SEARCH

SECOND

SELECT

SELECTION

SEND

SEND METHOD

SEPARATE

SEQUENCE

SERVER

SET

SET TIME

SETS

SETTIME

SETUP

SF

SG

SGN

SHORT

SHOW

SIN

SINGLE

SIZE

SKIP

SL

SM

SOME

SORT

SORTED

SORTKEY

SOUND

SOURCE

Copyright © Software AG 2003

245

SPACE

SPECIFIED

SQL

SQLID

SQRT

STACK

START

STARTING

STARTING FROM

STARTUP

STATEMENT

STATUS

STEP

STEPLIB

STOP

STORE

STOW

SUBPROGRAM

SUBPROGRAMS

SUBROUTINE

SUBSTR

SUBSTRING

SUBTRACT

SUM

SUPPRESS

SUPPRESSED

SUSPEND

SYMBOL

SYNC

SYSTEM

-T-

246

Keywords and Reserved Words

Copyright © Software AG 2003

Keywords and Reserved Words

TAN

TC

TECH

TERMINATE

TEST

TEXT

TEXTAREA

TEXTVARIABLE

THAN

THEM

THEN

THRU

TIME

TIME-OUT

TIMES

TIMESTAMP

TIMEZONE

TITLE

TO

TO VARIABLE

TO VARIABLES

TOP

TOTAL

TP

TR

TRAILER

TRANSACTION

TRANSFER

TRANSLATE

TREQ

TRUE

TS

TSO

TYPE

Copyright © Software AG 2003

247

ucC

UNCAT

UNCATALOG

UNCATLG

UNDERLINED

UNDLIN

UNION

UNIQUE

UNITE

UNKNOWN

UNTIL

UPDATE

UPLOAD

UPPER

UPPER CASE

USED

USER

USER-NAME

USING

-V -

248

Keywords and Reserved Words

Copyright © Software AG 2003

Keywords and Reserved Words

VAL

VALUE

VALUES

VARGRAPHIC

VARIABLE

VARIABLES

VERIFY

VERSIONS

VERT

VERTICALLY

VIA

VIEW

VRS

W -

WASTE PAPER

WH

WHEN

WHERE

WHILE

WINDOW

WITH

WORK

WRITE

Copyright © Software AG 2003

249

-Z- Keywords and Reserved Words

ZD

P

250 Copyright © Software AG 2003

Natural X

Natural X

This document covers the following topics:

® [ntroduction to NaturalX
® Developing NaturalX Applications
® Distributing NaturalX ApplicationgWindows platforms only)

Copyright © Software AG 2003

Natural X

251

Introduction to NaturalX Introduction to NaturalX

Introduction to NaturalX

This section covers the following topics:

e \Why NaturalX?
® Programming Techniques

Why NaturalX?

Software applications that are based on component architecture offer many advantages over traditional designs.
These include the following:

e Faster development. Programmers can build applications faster by assembling software from prebuilt
components.

® Reduced development costs. Having a common set of interfaces for programs means less work integrating
the components into complete solutions.

e Improved flexibility. It is easier to customize software for different departments within a company by just
changing some of the components that constitute the application.

® Reduced maintenance costs. In the case of an upgrade, it is often sufficient to change some of the
components instead of having to modify the entire application.

e Easier distribution. Components encapsulate data structures and functionality in distributable units.
Using NaturalX you can create component-based applications.
On Windows platforms you can use NaturalX in conjunction with DCOM. This enables you to:

e allow your components to be accessed by other components,

® execute these components on local and/or remote servers,

® access components written in a variety of programming languages across process and machine boundaries
from within Natural programs,

® provide your existing Natural applications with (quasi) standardized interfaces.

The following scenario illustrates how a company could exploit these advantages. A company introduces a new
sales management system that is based on an application design using components. There are numerous data
entry components in the application, one for each sales point. But all of these sales point use a common tax
calculation component that runs on a server. If the tax legislation is changed, then only the tax component has to
be updated instead of changing the data entry components at each site. In addition, the life of the programmers is
made easier because they do not have to worry about network programming and the integration of components
that are written in different languages.

On Mainframe and UNIX platforms you can also use NaturalX to apply a component-based programming style.
However, on these platforms the components cannot be distributed and can only run in a local Natural session.

Programming Techniques
This section covers the following topics:

Object-Based Programming
Defining Classes
Defining Interfaces

°
°
°
e |[nterface Inheritance

252 Copyright © Software AG 2003

Introduction to NaturalX Object-Based Programming

Object-Based Programming

NaturalX follows an object-based programming approach. Characteristic for this approach is the encapsulation of
data structures with the corresponding functionality into classes. Encapsulation is a good basis for easy
distribution. Because there are (quasi) standards for the interoperation of software components on the basis of
object models, an object-based approach is also a good basis for making software components interoperable
across program, machine and programming language boundaries.

Defining Classes

In an object-based application, each function is considered to be a service that is provided by an object. Each
object belongs to a class. Clients use the services either to perform a business task or to build even more complex
services and to provide these to other clients. Hence the basic step in creating an application with NaturalX is to
define the classes that form the application. In many cases, the classes simply correspond to the real things that
the application in question deals with, for example, bank accounts, aircraft, shipments etc. There is a wide range
of good literature about object-oriented design, and a number of well-proven methods can be used to identify the
classes in a given business.

The process of defining a class can be broadly broken down into the following steps:

® Create a Natural module of type class.

e Specify the name of the class using the DEFINE CLASS statement. This nhame will be used by the clients to
create objects of that class.

e Use the OBJECT clause of the DEFINE DATA statement to define how an object of the class will look
internally. Create a local data area that describes the layout of the object with the data area editor, and
assign this data area in the OBJECT clause.

These steps are described in more detail in the sdaéveloping Object-Based Natural Applications

Defining Interfaces

In order to be useful to clients, a class must provide services, which it does through interfaces. An interface is a
collection of methods and properties. A method is a function that an object of the class can perform when
requested by a client. A property is an attribute of an object that a client can retrieve or change. A client accesses
the services by creating an object of the class and using the methods and properties of its interfaces.

The process of defining an interface can be broadly broken down into the following steps:

® Use the INTERFACE clause to specify an interface name.
e Define the properties of the interface with PROPERTY definitions.
e Define the methods of the interface with METHOD definitions.

These steps are described in more detail in the sdaéiwaloping Object-Based Natural Applications

Simple classes only have one interface, but a class may have more than one interface. This possibility can be
used to group methods and properties into one interface that belong to the same functional aspect of the class and
to define different interfaces to handle other functional aspects. For examBlaptoyeeclass could have an
interfaceAdministrationthat contains all of the methods and properties of the administrative aspects of an
employee. This interface could contain the propeBaaryandDepartmentand the method
TransferToDepartmenfnother interfac®ualificationscould contain the qualification aspects of an employee.

Interface Inheritance
Defining several interfaces for a class is the first step towards using interface inheritance, which is a more

advanced method of designing classes and interfaces. This makes it possible to reuse the same interface
definition in different classes. Assume that there is a dlasmger which is to be treated in the same way as

Copyright © Software AG 2003 253

Interface Inheritance Introduction to NaturalX

the clas€Employeewith respect to qualification, but which is to be handled differently as far as administration is
concerned. This can be achieved by havingXhalificationinterface in both classes. This has the advantage
that a client that uses tiaualificationinterface on a given object does not have to check explicitly whether the
object represents d&mployeeor aManager It can simply use the same methods and properties without having
to know of what class the object is. The properties or methods can even be implemented in a different way in
both classes provided they are presented through the same interface definition.

The process of using interface inheritance can be broadly broken down into the following steps:

® Use the INTERFACE statements to define one or more interfaces in a copycode instead of defining them
directly in the class.

® The METHOD and PROPERTY definitions in the INTERFACE statement do not need to contain the IS
clause. At this point, you just define the external appearance of the interface without assigning
implementations to the methods and properties.

e Use the INTERFACE clause to include the copycode with its interface definition in each class that will
implement the interface.

® Use the METHOD and PROPERTY statements to assign implementations to the methods and properties of
the interface in each class that will implement the interface.

254 Copyright © Software AG 2003

Developing NaturalX Applications Developing NaturalX Applications

Developing NaturalX Applications

This section tells you how to develop an application by defining and using classes.
It covers the following topics:

® Using the Class Builder
® Defining Classes
® Using Classes and Objects

Using the Class Builder

On Windows platforms, Natural provides the Class Builder as the tool to develop Natural classes. The Class
Builder shows a Natural class in a structured hierarchical order and allows the user to manage the class and its
components efficiently. If you use the Class Builder, no knowledge or only a basic knowledge of the syntax
elements described in the sectdefining Classess required.

Using Natural Single Point of Development (SPoD), you can use the Class Builder also to develop Classes on
Mainframe and UNIX platforms. If you do not use SpoD, you develop classes on these platforms using the
Natural program editor. In this case, you should know the syntax of class definition described in the section
Defining Classes

Defining Classes

When you define a class, you must create a Natural class module, within which you create a DEFINE CLASS
statement. Using the DEFINE CLASS statement, you assign the class an externally usable name and define its
interfaces, methods and properties. You can also assign an object data area to the class, which describes the
layout of an instance of the class. On Windows platforms the DEFINE CLASS statement is also used to supply a
global unique identifier to those classes that are to be registered as COM classes.

This section covers the following topics:

Creating a Natural Class Module

Specifying a Class

Defining an Interface

Assigning an Object Data Variable to a Property
Assigning a Subprogram to a Method
Implementing Methods

Creating a Natural Class Module
¥ To create a Natural class module
® Create a Natural object of type Class.
Specifying a Class
The DEFINE CLASS statement defines the name of the class, the interfaces the class supports and the structure

of its objects. For classes that are to be registered as COM classes, it specifies also the Globally Unique ID of the
class and its Activation Policy.

Copyright © Software AG 2003 255

Defining an Interface Developing NaturalX Applications

¥ To specify a class

o Use theDEFINE CLASSstatement as described in the Natural Statements documentation.

Defining an Interface

Each interface of a class is specified with an INTERFACE statement inside the class definition. An
INTERFACE statement specifies the name of the interface and a number of properties and methods. For classes
that are to be registered as COM classes, it specifies also the Globally Unique ID of the interface.

A class can have one or several interfaces. For each interface, one INTERFACE statement is coded in the class
definition. Each INTERFACE statement contains one or several PROPERTY and METHOD clauses. Usually
the properties and methods contained in one interface are related from either a technical or a business point of
view.

The PROPERTY clause defines the name of a property and assigns a variable from the object data area to the
property. This variable is used to store the value of the property.

The METHOD clause defines the name of a method and assigns a subprogram to the method. This subprogram
is used to implement the method.

¥ To define an interface

o Use th NTERFACE statement as described in the Natural Statements documentation.

Assigning an Object Data Variable to a Property

The PROPERTY statement is used only when several classes are to implement the same interface in different
ways. In this case, the classes share the same interface definition and include it from a Natural Copycode. The
PROPERTY statement is then used to assign a variable from the object data area to a property, outside the
interface definition. Like the PROPERTY clause, the PROPERTY statement defines the name of a property and
assigns a variable from the object data area to the property. This variable is used to store the value of the

property.
» To assign an object data variable to a property

o Use thePROPERTYstatement as described in the Natural Statements documentation.

Assigning a Subprogram to a Method

The METHOD statement is used only when several classes are to implement the same interface in different
ways. In this case, the classes share the same interface definition and include it from a Natural Copycode. The
METHOD statement is then used to assign a subprogram to the method, outside the interface definition. Like the
METHOD clause, the METHOD statement defines the name of a method and assigns a subprogram to the
method. This subprogram is used to implement the method.

¥ To assign a subprogram to a method

e Use theMETHOD statement as described in the Natural Statements documentation.

Implementing Methods

A method is implemented as a Natural subprogram in the following general form:

256 Copyright © Software AG 2003

Developing NaturalX Applications Implementing Methods

DEFIME DATA sizfement

* Implemeniation code of the method

=

END

For information on the DEFINE DATA statement see the Natural Statements Manual.

All clauses of the DEFINE DATA statement are optional.

It is recommended that you use data areas instead of inline data definitions to ensure data consistency.
If a PARAMETER clause is specified, the method can have parameters and/or a return value.
Parameters that are marked 'BY VALUE' in the parameter data area are input parameters of the method.

Parameters that are not marked 'BY VALUE' are padserkferenceand are input/output parameters. This is
the default.

The first parameter that is marked 'BY VALUE RESULT' is returned as the return value for the method. If more
than one parameter is marked in this way, the others will be treated as input/output parameters.

Parameters that are marked 'OPTIONAL'’ are available with Version 4.1.2 and all subsequent releases. Optional
parameters need not to be specified when the method is called. They can be left unspecified by using the nX
notation in theSEND METHODstatement.

To make sure that the method subprogram accepts exactly the same parameters as specified in the corresponding
METHOD statement in the class definition, use a parameter data area instead of inline data definitions. Use the
same parameter data area as in the corresponding METHOD statement.

To give the method subprogram access to the object data structure, the OBJECT clause can be specified. To
make sure that the method subprogram can access the object data correctly, use a local data area instead of inline
data definitions. Use the same local data area as specified in the OBJECT clause of the DEFINE CLASS
statement.

The GLOBAL, LOCAL and INDEPENDENT clauses can be used as in any other Natural program.
While technically possible, it is usually not meaningful to use a CONTEXT clause in a method subprogram.

The following example retrieves data about a given person from a table. The search key is passed as a 'BY
VALUE’ parameter. The resulting data is returned through 'BY REFERENCE’ parameters (BY REFERENCE’
is the default definition). The return value of the method is defined by the specification '‘BY VALUE RESULT".

Copyright © Software AG 2003 257

Using Classes and Objects

Class: tah

Developing NaturalX Applications

define class tab
chject using tab-o

*

ivtcerface iface
-

method stab is stab-n

parameter using stab-a

ernd-method

*

end-inter face
+*

ehd-class

erud

Object Data Area: tah-o

Lir e
O I R]

*** Top of Data Ares ***

P-TALELE

P-NAME A 3E
P-CITY 4L 3E
P-ACE Nz

% End of Data Areg *

Parameter D ata Area: stah-a

(1:-100;

[T ST

% Top of Data Area *

L-NAME A 3E
L-CITY 4L 32
b-ACE |]
L~ FOTHD L

*** End of Daka Area *+*

¥

Method Subprogram: stabh-n

define dara

parameter using stab-a
object using tab-o
local

1 1i {iz)
end-define
+*
a—-fowmd = false
for i := 1 to 100
if p—hnEwme(i) = a-hame
a-city = p-city i)
grage 1= p-age(i]
a-foumd = trae
escape bottom
ernd-i f
end- for
*
ard

Using Classes and Objects

Objects created in a local Natural session can be accessed by other modules in the same Natural session. On
Windows platforms, objects created in other processes or on remote machines can be accessed via DCOM. In
both cases the rules for accessing and using classes and their objects are the same. The statement CREATE
OBJECT is used to create an object (also known as an instance) of a given class. To reference objects in Natural
programs, object handles have to be defined in the DEFINE DATA statement. Methods of an object are invoked
with the statement SEND METHOD. Objects can have properties, which can be accessed using the normal

assignment syntax.

258

Copyright © Software AG 2003

Developing NaturalX Applications Defining Object Handles

Note:
In order to use a NaturalX class via DCOM, the class must first be registered.

This section covers the following topics:

Defining Object Handles

Creating an Instance of a Class

Invoking a Particular Method of an Object
Accessing Properties

Sample Application

Defining Object Handles

To reference objects in Natural programs, object handles have to be defined as follows in the DEFINE DATA
statement:

DEFINE DATA ...
feviel handie-name [[array—definition)] HANDLE OF OBJECT

END -DEFINE

Example

DEFINE DATA LOCAL
1 #MYOBJ1 HANDLE OF OBJECT
1 #MYOBJ2 (1:5) HANDLE OF OBJECT
END-DEFINE

Creating an Instance of a Class

¥ To create an instance of a class

o Use theCREATE OBJECTstatement as described in the Natural Statements documentation.

Invoking a Particular Method of an Object

¥ To invoke a particular method of an object

® Use the SEND METHOD statement as described in the Natural Statements documentation.

Accessing Properties

Properties can be accessed using the ASSIGN (or COMPUTE) statement as follows:

ASSIGN operandl properfy—hame = aperand
ASSIGN operand? = operahd properfy—name

Copyright © Software AG 2003 259

Accessing Properties Developing NaturalX Applications

Object Handle - operandl1

Operandlmust be defined as an object handle and identifies the object whose property is to be accessed. The
object must already exist.

operand2

As operand? you specify an operand whose format must be data transfer-compatible to the format of the
property. Please refer to the data transfer compatibility rules in the Natural Reference documentation for further
information.

If the object is to be accessed via DCOM, you must also take into account the rules for data type conversion
which are outlined in the section Data Type Conversions.

property-name
The name of a property of the object.
If the property name conforms to Natural identifier syntax, it can be specified as follows

create object #01 of class "Employee"
#age = #01.Age

If the property name does not conform to Natural identifier syntax, it must be enclosed in angle brackets:

create object #01 of class "Employee"
#salary := #0l.<<%Salary>>

The property name can also be qualified with an interface name. This is necessary if the object has more than
one interface containing a property with the same name. In this case, the qualified property name must be
enclosed in angle brackets:

create object #01 of class "Employee"
#age = #0l.<<PersonalData.Age>>

Example

define data
local
1# @i2)
1+#o0 handle of object
1#p (5) handle of object
1#q (5) handle of object
1 #salary (p7.2)
1 #history (p7.2/1:10)
end-define

*

* Code omitted for brevity

*

* Set/Read the Salary property of the object #o.
#0.Salary := #salary

#salary := #0.Salary

* Set/Read the Salary property of

* the second object of the array #p.
#p.Salary(2) := #salary

#salary := #p.Salary(2)

*

* Set/Read the SalaryHistory property of the object #o.
#0.SalaryHistory := #history(1:10)

#history(1:10) := #o0.SalaryHistory

* Set/Read the SalaryHistory property of

260 Copyright © Software AG 2003

Developing NaturalX Applications Sample Application

* the second object of the array #p.

#p.SalaryHistory(2) := #history(1:10)

#history(1:10) := #p.SalaryHistory(2)

*

* Set the Salary property of each object in #p to the same value.
#p.Salary(*) := #salary

* Set the SalaryHistory property of each object in #p

* to the same value.

#p.SalaryHistory(*) := #history(1:10)

*

* Set the Salary property of each object in #p to the value

* of the Salary property of the corresponding object in #q.
#p.Salary(*) := #q.Salary(*)

* Set the SalaryHistory property of each object in #p to the value
* of the SalaryHistory property of the corresponding object in #q.
#p.SalaryHistory(*) := #q.SalaryHistory(*)

*

end

In order to use arrays of object handles and properties that have arrays as values correctly, it is important to
know the following:

A property of an occurrence of an array of object handles is addressed with the following index notation:
#p.Salary(2) := #salary

A property that has an array as value is always accessed as a whole. Therefore no index notation is necessary
with the property name:

#0.SalaryHistory := #history(1:10)

A property of an occurrence of an array of object handles which has an array as value is therefore addressed as
follows:

#p.SalaryHistory(2) := #history(1:10)

Sample Application

An example application is provided in the libraries SYSEXCOM and SYSEXCOC. See the A-README
members in these libraries for information about how to run the example.

Copyright © Software AG 2003 261

Distributing NaturalX Applications Distributing NaturalX Applications

Distributing NaturalX Applications

On Windows platforms, an application consisting of NaturalX classes can be distributed across several processes
and machines using DCOM.

This section covers the following topics:

® General
® Globally Unique Identifiers (GUIDs)

General

Using NaturalX, you can make Natural classes and their services available to local and remote clients, thus
creating distributed applications. Local clients are processes that run on the same machine as a given NaturalX
server, and remote clients are processes that run on a different machine.

In order to distribute applications, a widely used distributed object technology is used - the Microsoft Distributed
Component Object Model (DCOM). When you register a Natural class to DCOM, its interfaces are presented to
clients in a quasi-standardized fashion as dynamic COM interfaces, which are also known as dispatch interfaces.
These interfaces can be easily addressed by many programming languages including Visual Basic, Java, C++
and, of course, Natural.

There are several points that must be taken into consideration when organizing the distribution of a NaturalX
application. Each of these points is discussed in more detail in this chapter.

e Determine whether each class should be internal, external or local (see thelsttiah External and
Local Classes

® Globally unique IDs (GUIDs) must be assigned to the internal and external classes and their interfaces in
order to be able to address them uniquely in the network (see the s&otiatly Unique Idenitfiers
(GUIDs).

® You can define the activation policy for each class in order to control the conditions under which DCOM
activates it (see section Activation Policies).

® In order to organize classes to applications, you can define NaturalX servers and assign the classes to them
(see the section NaturalX Servers).

® Classes must be registered to make them known to DCOM (see section Registration).

® You can configure an application in order to further control its behavior (see the sections Configuration
Overview and DCOM Configuration on Windows 2000/XP).

Internal, External and Local Classes

It is important to distinguish between classes for internal use, classes for external use and those for local use
only.

Internal Classes
Objects (instances) of internal classes can only be created in the client process.
Internal classes have the following features:

® Access to client session-dependent resources such as files and system variables.
e Can run within the client transaction.
® Can be debugged using the Natural Debugger (local debugging).

262 Copyright © Software AG 2003

Distributing NaturalX Applications Globally Unique Identifiers - GUIDs

External Classes

Objects (instances) of external classes can be created in a different process or on a different machine. If the client
process is simultaneously a server for the class, they can also be created in the client process.

External classes have the following features:

No access to client session-dependent resources such as stacks, files and system variables.

Do not run within the client transaction.

Can be used by remote nodes.

Can be used by various clients using a variety of languages such as Natural, Java, Visual Basic, C/C++, etc.
Can be debugged with the Natural debugger (remote debugging).

Local Classes

Local classes are classes, which are executed in local execution mode. Natural executes a class locally (within
the Natural session) if it is either not registered or if DCOM is not available.

Local classes have the following features:

® Can be used even if DCOM is not available.
® Need not be registered with DCOM.
® Cannot be used from outside the client process.

Globally Unigue Identifiers - GUIDs

DCOM uses global unique identifiers (GUIDs) - 128-bit integers that are virtually guaranteed to be unique
throughout the world - to identify every interface and every class. This helps to ensure that server components
can be located and to prevent clients connecting to an object accidentally.

If a class is to be registered to DCOM, every interface defined in a Natural class and the class itself must be
associated with such a globally unique ID.

Once a globally unique ID has been assigned to an interface or a class, the ID must never be changed.

Using the Class Builder

On Windows platforms, Natural provides the Class Builder as the tool to develop Natural classes. The Class
Builder automatically assigns a GUID to every class and interface.

Copyright © Software AG 2003 263

	Cover Page
	page 2

	Table of Contents
	Programming Guide - Overview
	Reporting Mode or Structured Mode
	General Information
	Reporting Mode
	Structured Mode

	Setting the Programming Mode
	Functional Differences
	Closing a Processing Loop in Reporting Mode
	Closing a Processing Loop in Structured Mode
	Database Reference

	Defining Names and Fields
	Use and Structure of DEFINE DATA Statement
	Use of DEFINE DATA Statement
	Defining Fields within a DEFINE DATA Statement
	Defining Fields in a Separate Data Area
	Structuring a DEFINE DATA Statement Using Level Numbers
	Structuring and Grouping Your Definitions
	Level Numbers in View Definitions
	Level Numbers in Field Groups
	Example of Level Numbers in Group

	Level Numbers in Redefinitions
	Example of Level Numbers in Redefinition

	User-Defined Variables
	Defining User-Defined Variables
	Names of User-Defined Variables
	Length of Variable Names
	Limitations of Variable Names
	Characters Allowed in Variable Names
	First Character of Variable Names
	Special Considerations Regarding the Case of Characters in Variable Names

	Format and Length of User-Defined Variables
	Examples of User-Defined Variables

	User-Defined Constants
	Numeric Constants
	Alphanumeric Constants
	Date and Time Constants
	Hexadecimal Constants
	Logical Constants
	Floating Point Constants
	Attribute Constants
	Defining Named Constants

	Initial Values †and the RESET Statement‡
	Assigning Initial Values to a User-Defined Variable
	Default Initial Values
	RESET Statement

	Redefining Fields
	Using the REDEFINE Option of DEFINE DATA
	Example Program Illustrating the Use of a Redefinition

	Arrays
	Defining Arrays
	Initial Values for Arrays
	Assigning Initial Values to One-Dimensional Arrays
	Assigning Initial Values to Two-Dimensional Arrays
	Assigning the Same Value
	Assigning Different Values

	A Three-Dimensional Array
	Arrays as Part of a Larger Data Structure
	Database Arrays
	Using Arithmetic Expressions in Index Notation
	Arithmetic Support for Arrays
	Examples of Array Arithmetics

	Data Blocks
	Example of Data Block Usage
	Defining Data Blocks
	Block Hierarchies
	
	Explanation

	Accessing Data in an Adabas Database
	Data Definition Modules - DDMs
	Use of Data Definition Modules
	Listing/Displaying DDMs
	Components of a DDM

	Database Arrays
	Multiple-Value Fields
	Periodic Groups
	Referencing Multiple-Value Fields and Periodic Groups
	Multiple-Value Fields Within Periodic Groups
	Referencing Multiple-Value Fields Within Periodic Groups
	Referencing the Internal Count of a Database Array

	DEFINE DATA Views
	Use of Database Views
	Defining a Database View

	Statements for Database Access
	READ Statement
	Use of READ Statement
	Basic Syntax of READ Statement
	Limiting the Number of Records to be Read
	STARTING/ENDING Clauses
	WHERE Clause
	Further Example of READ Statement

	FIND Statement
	Use of FIND Statement
	Basic Syntaxof FIND Statement
	Limiting the Number of Records to be Processed
	WHERE Clause
	Example of WHERE Clause
	IF NO RECORDS FOUND Condition
	Example of IF NO RECORDS FOUND Clause
	Further Examples of FIND Statement

	HISTOGRAM Statement
	Use of HISTOGRAM Statement
	Syntax of HISTOGRAM Statement
	Limiting the Number of Values to be Read
	STARTING/ENDING Clauses
	WHERE Clause
	Example of HISTOGRAM Statement

	Multi-Fetch Clause
	Multi-Fetch on Mainframes
	Use of Multi-Fetch Feature on Mainframes
	Considerations for Multi-Fetch Usage
	Size of the Multi-Fetch Buffer
	Support of TEST DBLOG
	Example: TEST DBLOG List Break-Out

	Multi-Fetch under Windows and UNIX

	Database Processing Loops
	Creation of Database Processing Loops
	Hierarchies of Processing Loops
	Example of Processing Loop Hierarchy

	Example of Nested FIND Loops Accessing the Same File
	Further Examples of Nested READ and FIND Statements

	Database Update - Transaction Processing
	Logical Transaction
	Example of STORE Statement
	Record Hold Logic
	Example of GET Statement
	Backing Out a Transaction
	Restarting a Transaction
	Example of Using Transaction Data to Restart a Transaction

	Selecting Records Using ACCEPT/REJECT
	Statements Usable with ACCEPT and REJECT
	Example of ACCEPT Statement
	Logical Condition Criteria in ACCEPT/REJECT Statements
	Example of ACCEPT Statement with AND Operator
	Example of REJECT Statement with OR Operator
	Further Examples of ACCEPT and REJECT Statements

	AT START/END OF DATA Statements
	AT START OF DATA Statement
	AT END OF DATA Statement
	Example of AT START OF DATA and AT END OF DATA Statements
	Further Examples of AT START OF DATA and AT END OF DATA

	Output of Data
	Layout of an Output Page
	Statements Influencing a Report Layout
	General Layout Example

	Statements DISPLAY and WRITE
	DISPLAY Statement
	WRITE Statement
	Example of DISPLAY Statement
	Example of WRITE Statement
	Column Spacing - SF Parameter and nX Notation
	Tab Setting - nT Notation
	Line Advance - Slash Notation
	Example of Line Advance in DISPLAY Statement
	Example of Line Advance in WRITE Statement
	Further Examples of DISPLAY and WRITE Statements

	Index Notation for Multiple-Value Fields and Periodic Groups
	Use of Index Notation
	Example of Index Notation in DISPLAY Statement
	Example of Index Notation in WRITE Statement

	Page Titles and Page Breaks
	Default Page Title
	Suppress Page Title - NOTITLE Option
	Define Your Own Page Title - WRITE TITLE Statement
	Specifying Text for Your Title
	Specifying Empty Lines after the Title
	Title Justification and/or Underlining

	Logical Page and Physical Page
	Page Size - PS Parameter
	Page Advance
	Page Advance Controlled by EJ Parameter
	Page Advance Controlled by EJECT or NEWPAGE Statements
	Page Advance without Title/Header on Next Page
	Page Advance with End/Top-of-Page Processing

	Eject/New Page when less than n Line Left

	New Page with Title
	Page Trailer - WRITE TRAILER Statement
	Specifying a Page Trailer
	Considering Logical Page Size
	Page Trailer Justification and/or Underlining

	AT TOP OF PAGE Statement
	AT END OF PAGE Statement
	Further Examples
	Examples of WRITE TITLE, WRITE TRAILER, AT TOP OF PAGE, AT END OF PAGE and SKIP Statements
	Example of NOTITLE Option
	Example of NEWPAGE and EJECT Statements

	Column Headers
	Default Column Headers
	Suppress Default Column Headers - NOHDR Option
	Define Your Own Column Headers
	Combining NOTITLE and NOHDR
	Centering of Column Headers - HC Parameter
	Width of Column Headers - HW Parameter
	Filler Characters for Headers - Parameters FC and GC
	Underlining Character for Titles and Headers - UC Parameter
	Suppressing Column Headers - Slash Notation
	Further Examples of Column Headers

	Parameters to Influence the Output of Fields
	Overview of Field-Output-Relevant Parameters
	Leading Characters - LC Parameter
	Insertion Characters - IC Parameter
	Trailing Characters - TC Parameter
	Output Length - AL and NL Parameters
	Sign Position - SG Parameter
	Example Program without Parameters
	Example Program with Parameters AL, NL, LC, IC and TC

	Identical Suppress - IS Parameter
	Example Program without IS Parameter
	Example Program with IS Parameter

	Zero Printing - ZP Parameter
	Empty Line Suppression - ES Parameter
	Example Program without Parameters ZP and ES
	Example Program with Parameters ZP and ES

	Further Examples of Field-Output-Relevant Parameters

	Edit Masks - EM Parameter
	Use of EM Parameter
	Edit Masks for Numeric Fields
	Edit Masks for Alphanumeric Fields
	Length of Fields
	Edit Masks for Date and Time Fields
	Examples of Edit Masks
	Example Program without EM Parameters
	Example Program with EM Parameters

	Further Examples of Edit Masks

	Vertical Displays
	Creating Vertical Displays
	Combining DISPLAY and WRITE
	Tab Notation - T*field
	Positioning Notation x/y
	DISPLAY VERT Statement
	DISPLAY VERT without AS Clause
	DISPLAY VERT AS CAPTIONED and HORIZ
	DISPLAY VERT AS text
	DISPLAY VERT AS text CAPTIONED
	Tab Notation P*field

	Further Example of DISPLAY VERT with WRITE Statement

	Object Types
	What Types of Programming Objects Are There?
	Types of Programming Objects
	Creating and Maintaining Objects

	Data Areas
	Use of Data Areas
	Local Data Area
	Global Data Area
	When are Global Data Areas Initialized?

	Parameter Data Area
	Parameter Defined within DEFINE DATA PARAMETER Statement
	Parameter Defined in Parameter Data Area

	Programs, Subprograms and Subroutines
	A Modular Application Structure
	Multiple Levels of Invoked Objects
	Program
	Program Invoked with FETCH RETURN
	Program Invoked with FETCH

	Subroutine
	Inline Subroutine
	External Subroutine
	Data Available to an Inline Subroutine
	Data Available to an External Subroutine

	Subprogram
	Data Available to a Subprogram

	Processing Flow when Invoking a Routine

	Maps
	Benefits of Using Maps
	Types of Maps
	Creating Maps
	Starting/Stopping Map Processing

	Helproutines
	Invoking Help
	Specifying Helproutines
	Programming Considerations for Helproutines
	Passing Parameters to Helproutines
	Equal Sign Option
	Array Indices
	Help as a Window

	Multiple Use of Source Code - Copycode
	Use of Copycode
	Processing of Copycode

	Documenting Natural Objects - Text
	Use of Text Objects
	Writing Text

	Creating Event Driven Applications - Dialog
	Creating Component Based Applications - Class
	Using Non-Natural Files - Resource
	Further Programming Aspects
	END/STOP Statements
	End of Program - END Statement
	End of Application - STOP Statement

	Conditional Processing - IF Statement
	Structure of IF Statement
	Example of IF Statement
	Nested IF Statements
	Example of Nested IF Statements
	Further Example of IF Statement

	Loop Processing
	Use of Processing Loops
	Limiting Database Loops
	Possible Ways of Limiting Database Loops
	LT Session Parameter
	LIMIT Statement
	Limit Notation
	Priority of Limit Settings

	Limiting Non-Database Loops - REPEAT Statement
	Example of REPEAT Statement
	Terminating a Processing Loop - ESCAPE Statement
	Loops Within Loops
	Example of Nested FIND Statements
	Referencing Statements within a Program
	Example of Referencing with Line Numbers
	Example with Statement Reference Labels

	Control Breaks
	Use of Control Breaks
	AT BREAK Statement
	Control Break Based on a Database Field
	Control Break Based on a User-Defined Variable
	Multiple Control Break Levels

	Automatic Break Processing
	Example of System Functions with AT BREAK Statement
	BEFORE BREAK PROCESSING Statement
	Example of BEFORE BREAK PROCESSING Statement
	User-Initiated Break Processing - PERFORM BREAK PROCESSING Statement
	Example of PERFORM BREAK PROCESSING Statement
	Further Example of AT BREAK Statement

	Data Computation
	Statements Used for Computing Data or Transferring Values
	
	Format of Fields

	COMPUTE Statement
	Statements MOVE and COMPUTE
	Statements ADD, SUBTRACT, MULTIPLY and DIVIDE
	Example of MOVE, SUBTRACT and COMPUTE Statements
	COMPRESS Statement
	Example of COMPRESS and MOVE Statements
	Example of COMPRESS Statement
	Mathematical Functions
	Further Examples of COMPUTE, MOVE and COMPRESS Statements

	System Variables and System Functions
	System Variables
	System Functions
	Example of System Variables and System Functions
	Further Examples of System Variables
	Further Examples of System Functions

	Stack
	Use of Natural Stack
	Stack Processing
	Placing Data on the Stack
	STACK Parameter
	STACK Statement
	FETCH and RUN Statements

	Clearing the Stack

	Processing of Date Information
	Edit Masks for Date Fields and Date System Variables
	Default Edit Mask for Date - DTFORM Parameter
	Date Format for Alphanumeric Representation - DF Parameter
	Examples of DF Parameter with WRITE Statements
	Example of DF Parameter with MOVE Statement
	Example of DF Parameter with STACK Statement
	Example of DF Parameter with INPUT Statement

	Date Format for Output - DFOUT Parameter
	Date Format for Stack - DFSTACK Parameter
	Year Sliding Window - YSLW Parameter
	Combinations of DFSTACK and YSLW

	Date Format for Default Page Title - DFTITLE Parameter

	Designing User Interfaces - Overview
	Screen Design
	Control of Function-Key Lines - Terminal Command %Y
	Format of Function-Key Lines
	Other Display Options

	Positioning of Function-Key Lines
	Cursor-Sensitivity

	Control of the Message Line - Terminal Command %M
	Positioning the Message Line
	Message Line Protection
	Message Line Color

	Assigning Colors to Fields - Terminal Command %=
	Outlining - Terminal Command %D=B
	Statistics Line/Infoline - Terminal Command %X
	Statistics Line
	Infoline

	Windows
	What is a Window?
	Positioning on the Physical Screen
	Positioning on the Logical Page

	DEFINE WINDOW Statement
	INPUT WINDOW Statement
	Message and Function-Key Lines
	Multiple Windows

	Standard/Dynamic Layout Maps
	Standard Layout Maps
	Dynamic Layout Maps

	Multilingual User Interfaces
	Language Codes
	Defining the Language of a Natural Object
	Defining Languages with Alphabetical Map Codes

	Defining the User Language
	Referencing Multilingual Objects
	Programs
	Error Messages
	Edit Masks for Date and Time Fields

	Skill-Sensitive User Interfaces

	Dialog Design
	Field-Sensitive Processing
	*CURS-FIELD and POS†field-name‡

	Simplifying Programming
	System Function POS

	Line-Sensitive Processing
	System Variable *CURS-LINE

	Column-Sensitive Processing
	System Variable *CURS-COL

	Processing Based on Function Keys
	System Variable *PF-KEY

	Processing Based on Function-Key Names
	System Variable *PF-NAME

	Processing Data Outside an Active Window
	System Variable *COM
	Example Usage of *COM
	Positioning the Cursor to *COM - the %T* Terminal Command

	Copying Data from a Screen
	Terminal Commands %CS and %CC
	Selecting a Line from Report Output for Further Processing

	Statements REINPUT/REINPUT FULL
	Object-Oriented Processing
	Natural Command Processor

	Keywords and Reserved Words
	Performing a Keyword Check
	Alphabetical List of Keywords and Reserved Words
	Symbols and Special Characters
	- A -
	- B -
	- C -
	- D -
	- E -
	- F -
	- G -
	- H -
	- I -
	- J -
	- K -
	- L -
	- M -
	- N -
	- O -
	- P -
	- Q -
	- R -
	- S -
	- T -
	- U -
	- V -
	- W -
	- X -
	- Y -
	- Z -

	Natural X
	Introduction to NaturalX
	Why NaturalX?
	Programming Techniques
	Object-Based Programming
	Defining Classes
	Defining Interfaces
	Interface Inheritance

	Developing NaturalX Applications
	Using the Class Builder
	Defining Classes
	Creating a Natural Class Module
	Specifying a Class
	Defining an Interface
	Assigning an Object Data Variable to a Property
	Assigning a Subprogram to a Method
	Implementing Methods

	Using Classes and Objects
	Defining Object Handles
	Creating an Instance of a Class
	Invoking a Particular Method of an Object
	Accessing Properties
	Object Handle - operand1
	operand2
	property-name

	Sample Application

	Distributing NaturalX Applications
	General
	Internal, External and Local Classes
	Internal Classes
	External Classes
	Local Classes

	Globally Unique Identifiers - GUIDs
	Using the Class Builder

